scispace - formally typeset
Search or ask a question
Author

Richard Hoogenboom

Bio: Richard Hoogenboom is an academic researcher from Ghent University. The author has contributed to research in topics: Polymerization & Copolymer. The author has an hindex of 72, co-authored 560 publications receiving 25774 citations. Previous affiliations of Richard Hoogenboom include Université catholique de Louvain & Eindhoven University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: PEG is the most used polymer and also the gold standard for stealth polymers in the emerging field of polymer-based drug delivery and alternative polymers will be evaluated.
Abstract: Poly(ethylene glycol) (PEG) is the most used polymer and also the gold standard for stealth polymers in the emerging field of polymer-based drug delivery. The properties that account for the overwhelming use of PEG in biomedical applications are outlined in this Review. The first approved PEGylated products have already been on the market for 20 years. A vast amount of clinical experience has since been gained with this polymer--not only benefits, but possible side effects and complications have also been found. The areas that might need consideration and more intensive and careful examination can be divided into the following categories: hypersensitivity, unexpected changes in pharmacokinetic behavior, toxic side products, and an antagonism arising from the easy degradation of the polymer under mechanical stress as a result of its ether structure and its non-biodegradability, as well as the resulting possible accumulation in the body. These possible side effects will be discussed in this Review and alternative polymers will be evaluated.

2,815 citations

Journal ArticleDOI
TL;DR: This Minireview discusses the success and applicability of new, in particular metal-free, click reactions, which expand the opportunities for synthesizing small organic compounds as well as tailor-made macromolecules and bioconjugates.
Abstract: No copper needed: In recent years, a large number of metal-free click reactions have been reported based on thiol-ene radical additions, Diels–Alder reactions, and Michael additions. In this Minireview, special attention is given to the advantages and limitations of the different methods to evaluate whether they have the potential to surpass the overwhelming success of the copper(I)-catalyzed azide-alkyne cycloaddition. The overwhelming success of click chemistry encouraged researchers to develop alternative “spring-loaded” chemical reactions for use in different fields of chemistry. Initially, the copper(I)-catalyzed azide-alkyne cycloaddition was the only click reaction. In recent years, metal-free [3+2] cycloaddition reactions, Diels–Alder reactions, and thiol-alkene radical addition reactions have come to the fore as click reactions because of their simple synthetic procedures and high yields. Furthermore, these metal-free reactions have wide applicability and are physiologically compatible. These and other alternative click reactions expand the opportunities for synthesizing small organic compounds as well as tailor-made macromolecules and bioconjugates. This Minireview discusses the success and applicability of new, in particular metal-free, click reactions.

790 citations

Journal ArticleDOI
TL;DR: A revival of poly(2-oxazoline)s has arisen because of their potential use as biomaterials and thermoresponsive materials, as well as the easy access to defined amphiphilic structures for (hierarchical) self-assembly.
Abstract: The living cationic ring-opening polymerization of 2-oxazolines has been studied in great detail since its discovery in 1966. The versatility of this living polymerization method allows copolymerization of a variety of 2-oxazoline monomers to give a range of tunable polymer properties that enable, for example, hydrophilic, hydrophobic, fluorophilic, as well as hard and soft materials to be obtained. However, this class of polymers was almost forgotten in the 1980s and 1990s because of their long reaction times and limited application possibilities. In the new millennium, a revival of poly(2-oxazoline)s has arisen because of their potential use as biomaterials and thermoresponsive materials, as well as the easy access to defined amphiphilic structures for (hierarchical) self-assembly. Recent developments that illustrate the potential of poly(2-oxazoline)s are discussed in this Review. In addition, the promising combination of poly(2-oxazoline)s and click chemistry is illustrated.

755 citations

Journal ArticleDOI
TL;DR: In this critical review, the application of the azide-alkyne 1,3-dipolar cycloaddition for the construction of well-defined polymer architectures will be discussed in detail, providing a comprehensive overview for all disciplines related to polymeric materials.
Abstract: Living/controlled polymerization techniques have enabled the synthesis of a large variety of different well-defined (co)polymer structures. In addition, the use of click chemistry in polymer science is a quickly emerging field of research since it allows the fast and simple creation of well-defined and complex polymeric structures in yields that were previously unattainable. In this critical review, the application of the azide–alkyne 1,3-dipolar cycloaddition for the construction of well-defined polymer architectures will be discussed in detail, providing a comprehensive overview for all disciplines related to polymeric materials.

726 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermodynamic properties of two important polymer classes in aqueous solution, namely poly(2-oxazoline)s and poly(ethylene oxide)s, is presented.

451 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Novel engineering approaches are discussed that capitalize on the growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients.
Abstract: The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

3,800 citations

Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Journal ArticleDOI
TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Abstract: Solution-processed bulk-heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low-cost power production. This article reviews the highlights of the last few years, and summarizes today's state-of-the-art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.

3,084 citations

Journal ArticleDOI
TL;DR: PEG is the most used polymer and also the gold standard for stealth polymers in the emerging field of polymer-based drug delivery and alternative polymers will be evaluated.
Abstract: Poly(ethylene glycol) (PEG) is the most used polymer and also the gold standard for stealth polymers in the emerging field of polymer-based drug delivery. The properties that account for the overwhelming use of PEG in biomedical applications are outlined in this Review. The first approved PEGylated products have already been on the market for 20 years. A vast amount of clinical experience has since been gained with this polymer--not only benefits, but possible side effects and complications have also been found. The areas that might need consideration and more intensive and careful examination can be divided into the following categories: hypersensitivity, unexpected changes in pharmacokinetic behavior, toxic side products, and an antagonism arising from the easy degradation of the polymer under mechanical stress as a result of its ether structure and its non-biodegradability, as well as the resulting possible accumulation in the body. These possible side effects will be discussed in this Review and alternative polymers will be evaluated.

2,815 citations