scispace - formally typeset
Search or ask a question
Author

Richard I. Morimoto

Other affiliations: University of Chicago, Rice University, University of Manchester  ...read more
Bio: Richard I. Morimoto is an academic researcher from Northwestern University. The author has contributed to research in topics: Heat shock protein & Heat shock. The author has an hindex of 122, co-authored 351 publications receiving 54894 citations. Previous affiliations of Richard I. Morimoto include University of Chicago & Rice University.


Papers
More filters
Journal ArticleDOI
15 Feb 2008-Science
TL;DR: The proteostasis network is described, a set of interacting activities that maintain the health of proteome and the organism that has the potential to ameliorate some of the most challenging diseases of this era.
Abstract: The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.

2,140 citations

Journal ArticleDOI
TL;DR: The protective role of HSPs is a measure of their capacity to assist in the repair of protein damage, through their chaperoning effects on proteins, protect cells from many forms of stress-induced cell damage and could influence the course of disease.
Abstract: Our cells and tissues are challenged constantly by exposure to extreme conditions that cause acute and chronic stress. Consequently, survival has necessitated the evolution of stress response networks to detect, monitor, and respond to environmental changes (Morimoto et al. 1990, 1994a; Baeuerle 1995; Baeuerle and Baltimore 1996; Feige et al. 1996; Morimoto and Santoro 1998). Prolonged exposure to stress interferes with efficient operations of the cell, with negative consequences on the biochemical properties of proteins that, under ideal conditions, exist in thermodynamically stable states. In stressed environments, proteins can unfold, misfold, or aggregate. Therefore, the changing demands on the quality control of protein biogenesis, challenges protein homeostasis, for which the heat shock response, through the elevated synthesis of molecular chaperones and proteases, repairs protein damage and assists in the recovery of the cell. The inducible transcription of heat shock genes is the response to a plethora of stress signals (Lis and Wu 1993; Morimoto 1993; Wu 1995) (Fig. 1), including (1) environmental stresses, (2) nonstress conditions, and (3) pathophysiology and disease states. Although changes in heat shock protein (HSP) expression are associated with certain diseases (Morimoto et al. 1990), these observations leave open the question of whether this is an adaptation to the particular pathophysiological state, a reflection of the suboptimal cellular environment associated with the disease, or serves to warn other cells and tissues of imminent danger. The protective role of HSPs is a measure of their capacity to assist in the repair of protein damage. Whether in prokaryotes, plants, or animals, overexpression of one or more HSPs is often sufficient to protect cells and tissues against otherwise lethal exposures to diverse environmental stresses including hydrogen peroxide and other oxidants, toxic chemicals, extreme temperatures, and ethanol-induced toxicity (Parsell and Lindquist 1994). In vertebrate tissue culture cells and animal models, elevating HSPs level, either by modulation of the heat shock response or by constitutive overexpression of specific heat shock proteins, restricts or substantially reduces the level of pathology and cell death (Mizzen and Welch 1988; Huot et al. 1991; Jaattela et al. 1992; Parsell and Lindquist 1994; Mestril et al. 1994; Plumier et al. 1995; Marber et al. 1995; Mehlen et al. 1995; Mosser et al. 1997). This has led to the recognition that HSPs, via their chaperoning effects on proteins, protect cells from many forms of stress-induced cell damage and could influence the course of disease.

1,855 citations

Book
01 Jan 1994
TL;DR: McClintock et al. as mentioned in this paper described the role of heat shock proteins as proteases or unfolded polypeptide-binding proteins in the regulation of the heat shock response in eukaryotic organisms.
Abstract: In contrast to such “shocks” for which the genome is unprepared, are those a genome must face repeatedly, and for which it is prepared to respond in a programmed manner. Examples are the “heat shock” responses in eukaryotic organisms, and the “SOS” responses in bacteria. Each of these initiates a highly programmed sequence of events within the cell that serves to cushion the effects of the shock. Some sensing mechanism must be present in these instances to alert the cell to imminent danger, and to set in motion the orderly sequence of events that will mitigate this danger. The responses of genomes to unanticipated challenges are not so precisely programmed. Nevertheless, these are sensed, and the genome responds in a discernible but initially unforeseen manner. Barbara McClintock–Nobel lecture , 8 December 1983 These prophetic words by Barbara McClintock eloquently capture the essence of the heat shock response. At the time these words were written, it was known that all organisms shared a common response to physiological stress. Some of the genes encoding heat shock proteins had just been cloned and the basis of heat shock gene regulation was in the early stages of investigation. However, the function of the heat shock response and the role of heat shock proteins were still a mystery. This mystery slowly began to unravel, and by the 1980s, some information on the function of the heat shock proteins as proteases or unfolded polypeptide-binding proteins had already accumulated. These early stages of elucidation of the biochemical...

1,517 citations

Journal ArticleDOI
TL;DR: It is shown, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers, which suppresses apoptosis by directly associating with Apf-1 and blocking the assembly of a functional apoptosome.
Abstract: The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.

1,469 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
09 Nov 2000-Nature
TL;DR: Evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span is reviewed.
Abstract: Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.

8,665 citations

Journal ArticleDOI
TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Abstract: The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.

7,888 citations