scispace - formally typeset
Search or ask a question
Author

Richard J. Ladle

Bio: Richard J. Ladle is an academic researcher from Federal University of Alagoas. The author has contributed to research in topics: Biodiversity & Population. The author has an hindex of 42, co-authored 196 publications receiving 8078 citations. Previous affiliations of Richard J. Ladle include Environmental Change Institute & University of Porto.


Papers
More filters
Journal ArticleDOI
TL;DR: The role played by biogeographical science in the emergence of conservation guidance is examined and the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as both a substantial body of theory and analysis is made.
Abstract: There is general agreement among scientists that biodiversity is under assault on a global basis and that species are being lost at a greatly enhanced rate. This article examines the role played by biogeographical science in the emergence of conservation guidance and makes the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as: the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxa individually and collectively, to problems concerning the conservation of biodiversity. Conservation biogeography thus encompasses both a substantial body of theory and analysis, and some of the most prominent planning frameworks used in conservation. Considerable advances in conservation guidelines have been made over the last few decades by applying biogeographical methods and principles. Herein we provide a critical review focussed on the sensitivity to assumptions inherent in the applications we examine. In particular, we focus on four inter-related factors: (i) scale dependency (both spatial and temporal); (ii) inadequacies in taxonomic and distributional data (the so-called Linnean and Wallacean shortfalls); (iii) effects of model structure and parameterisation; and (iv) inadequacies of theory. These generic problems are illustrated by reference to studies ranging from the application of historical biogeography, through island biogeography, and complementarity analyses to bioclimatic envelope modelling. There is a great deal of uncertainty inherent in predictive analyses in conservation biogeography and this area in particular presents considerable challenges. Protected area planning frameworks and their resulting map outputs are amongst the most powerful and influential applications within conservation biogeography, and at the global scale are characterised by the production, by a small number of prominent NGOs, of bespoke schemes, which serve both to mobilise funds and channel efforts in a highly targeted fashion. We provide a simple typology of protected area planning frameworks, with particular reference to the global scale, and provide a brief critique of some of their strengths and weaknesses. Finally, we discuss the importance, especially at regional scales, of developing more responsive analyses and models that integrate pattern (the compositionalist approach) and processes (the functionalist approach) such as range collapse and climate change, again noting the sensitivity of outcomes to starting assumptions. We make the case for the greater engagement of the biogeographical community in a programme of evaluation and refinement of all such schemes to test their robustness and their sensitivity to alternative conservation priorities and goals.

1,030 citations

Journal ArticleDOI
TL;DR: The results of fast ChlF analyses of photosynthetic responses to environmental stresses are reviewed, the potential scientific and practical applications of this innovative methodology are discussed, and the recent availability of portable devices has significantly expanded the potential utilization of Chlf techniques.
Abstract: Plants living under natural conditions are exposed to many adverse factors that interfere with the photosynthetic process, leading to declines in growth, development, and yield. The recent development of Chlorophyll a fluorescence (ChlF) represents a potentially valuable new approach to study the photochemical efficiency of leaves. Specifically, the analysis of fluorescence signals provides detailed information on the status and function of Photosystem II (PSII) reaction centers, light-harvesting antenna complexes, and both the donor and acceptor sides of PSII. Here, we review the results of fast ChlF analyses of photosynthetic responses to environmental stresses, and discuss the potential scientific and practical applications of this innovative methodology. The recent availability of portable devices has significantly expanded the potential utilization of ChlF techniques, especially for the purposes of crop phenotyping and monitoring.

756 citations

Journal ArticleDOI
TL;DR: The concept of knowledge shortfalls is updated and the tradeoffs between generality and uncertainty are reviewed and a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge is concluded.
Abstract: Ecologists and evolutionary biologists are increasingly using big-data approaches to tackle questions at large spatial, taxonomic, and temporal scales. However, despite recent efforts to gather two centuries of biodiversity inventories into comprehensive databases, many crucial research questions remain unanswered. Here, we update the concept of knowledge shortfalls and review the tradeoffs between generality and uncertainty. We present seven key shortfalls of current biodiversity data. Four previously proposed shortfalls pinpoint knowledge gaps for species taxonomy (Linnean), distribution (Wallacean), abundance (Prestonian), and evolutionary patterns (Darwinian). We also redefine the Hutchinsonian shortfall to apply to the abiotic tolerances of species and propose new shortfalls relating to limited knowledge of species traits (Raunkiaeran) and biotic interactions (Eltonian). We conclude with a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge f...

667 citations

Journal ArticleDOI
TL;DR: A general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny is presented.
Abstract: Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galapagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short-lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single-island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.

613 citations

Journal ArticleDOI
TL;DR: Practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology is provided to scientists who have some experience with the application but are still in the process of discovering what it all means and how it can be used.
Abstract: The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.

577 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in species distribution models, and new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales are suggested.
Abstract: In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

5,620 citations

Journal ArticleDOI
TL;DR: It is argued that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.
Abstract: Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

2,624 citations

Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations