scispace - formally typeset
Search or ask a question
Author

Richard J. Saykally

Bio: Richard J. Saykally is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Spectroscopy & Absorption spectroscopy. The author has an hindex of 94, co-authored 457 publications receiving 40997 citations. Previous affiliations of Richard J. Saykally include University of California & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of laser magnetic resonance measurements performed on the ground CII state of singly consumed atomic carbon (C_II) were presented, and the 2^P_(3/2) ← ^2P_(1/2)-fine-structure intervals of both C^+ and C^+) were determined with a precision of approximately 1 ppm and the g_J factors to approximately one part in 10^4.
Abstract: We present the results of laser magnetic resonance measurements performed on the ground ^2P state of singly ionized atomic carbon (C_II). The 2^P_(3/2) ← ^2P_(1/2) fine-structure intervals of both ^(12)C^+ and ^(13)C^+ have been determined with a precision of approximately 1 ppm, and the g_J factors to approximately one part in 10^4. Specifically, we find that g_(J=(1/2)) = 0.66576(11) and g_(J=(3/2)) = 1.33412(11), while for ^(12)C^+ ΔE_0(^2P_(3/2) ← ^2P_(1/2))= 1900536.9(1.3) MHz, with ΔE_0(^2P_(3/2) ← ^2P_(1/2)) = 1900545.8(2.1) and ΔE(^2P(3/2) ← ^2P_(1/2), F = 2 ← 1) = 1900466.1(2.3) MHz in ^(13)C^+. The highly precise values of the ^(12)C_II and ^(13)C_II fine-structure intervals verify the already secure far-infrared astronomical identification of C^+ and should allow the interstellar (^(12)C / ^(13)C) ratio to be unambiguously determined in a number of environments.

62 citations

Journal ArticleDOI
TL;DR: In this article, two new intermolecular vibration-rotation-tunneling (VRT) bands of Ar-NH3 have been measured using tunable far infrared laser spectroscopy.
Abstract: Two new intermolecular vibration–rotation‐tunneling (VRT) bands of Ar–NH3 have been measured using tunable far infrared laser spectroscopy. We have unambiguously assigned these and a previously measured FIR band [Gwo et al., Mol. Phys. 71, 453 (1990)] as Π(10, n=0)←Σ(00, n=0), Σ(10, n=0)←Σ(00, n=0), and Σ(00, n=1)←Σ(00, n=0). The three upper states of these are found to be strongly mixed by anisotropy and Coriolis effects. A simultaneous least squares fit of all transitions has yielded vibrational frequencies, rotational and centrifugal distortion constants, and a Coriolis parameter as well as quadrupole hyperfine coupling constants for the upper states. An effective angular potential energy surface for Ar–NH3 in its lowest stretching state has been determined from these data, after explicitly accounting for the effects of bend stretch interactions. Features of the surface include a global minimum at the near T‐shaped configuration (θ=90°), a 30 cm−1 to 60 cm−1 barrier to rotation at θ=180° (or 0°), and a...

61 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental vibration-rotation bands of 16OH− and 18OH− near 3550 cm−1 were measured with a color center laser and analyzed with a least squares fit yielding vibration−rotation constants through sextic distortion terms.
Abstract: We report the measurement and analysis of the fundamental vibration–rotation bands of 16OH− and 18OH− near 3550 cm−1 by velocity modulation spectroscopy with a color center laser. These bands were analyzed with a least squares fit yielding vibration–rotation constants through sextic distortion terms. From the band origins of the two isotopes, harmonic frequencies and anharmonicities were calculated and a dissociation energy was estimated assuming a Morse potential. Comparisons with high level ab initio calculations are presented. The OH− concentration is found to be dramatically dependent on the presence of metal sputtered on the discharge cell wall.

60 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme.
Abstract: We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the IR-CRLAS technique has been used to measure the mid-infrared O−D stretching spectrum of the fully deuterated gas-phase water dimer for the first time.
Abstract: The IR-CRLAS technique has been used to measure the mid-infrared O−D stretching spectrum of the fully deuterated gas-phase water dimer for the first time. The instrumentally limited resolution of 1...

60 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations