scispace - formally typeset
Search or ask a question

Showing papers by "Richard K. Wilson published in 2008"


Journal ArticleDOI
23 Oct 2008-Nature
TL;DR: The interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated gliobeasts, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Abstract: Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

6,761 citations


Journal ArticleDOI
Li Ding1, Gad Getz2, David A. Wheeler3, Elaine R. Mardis1, Michael D. McLellan1, Kristian Cibulskis2, Carrie Sougnez2, Heidi Greulich4, Heidi Greulich2, Donna M. Muzny3, Margaret Morgan3, Lucinda Fulton1, Robert S. Fulton1, Qunyuan Zhang1, Michael C. Wendl1, Michael S. Lawrence2, David E. Larson1, Ken Chen1, David J. Dooling1, Aniko Sabo3, Alicia Hawes3, Hua Shen3, Shalini N. Jhangiani3, Lora Lewis3, Otis Hall3, Yiming Zhu3, Tittu Mathew3, Yanru Ren3, Jiqiang Yao3, Steven E. Scherer3, Kerstin Clerc3, Ginger A. Metcalf3, Brian Ng3, Aleksandar Milosavljevic3, Manuel L. Gonzalez-Garay3, John R. Osborne1, Rick Meyer1, Xiaoqi Shi1, Yuzhu Tang1, Daniel C. Koboldt1, Ling Lin1, Rachel Abbott1, Tracie L. Miner1, Craig Pohl1, Ginger A. Fewell1, Carrie A. Haipek1, Heather Schmidt1, Brian H. Dunford-Shore1, Aldi T. Kraja1, Seth D. Crosby1, Christopher S. Sawyer1, Tammi L. Vickery1, Sacha N. Sander1, Jody S. Robinson1, Wendy Winckler4, Wendy Winckler2, Jennifer Baldwin2, Lucian R. Chirieac4, Amit Dutt2, Amit Dutt4, Timothy Fennell2, Megan Hanna4, Megan Hanna2, Bruce E. Johnson4, Robert C. Onofrio2, Roman K. Thomas5, Giovanni Tonon4, Barbara A. Weir2, Barbara A. Weir4, Xiaojun Zhao2, Xiaojun Zhao4, Liuda Ziaugra2, Michael C. Zody2, Thomas J. Giordano6, Mark B. Orringer6, Jack A. Roth, Margaret R. Spitz7, Ignacio I. Wistuba, Bradley A. Ozenberger8, Peter J. Good8, Andrew C. Chang6, David G. Beer6, Mark A. Watson1, Marc Ladanyi9, Stephen R. Broderick9, Akihiko Yoshizawa9, William D. Travis9, William Pao9, Michael A. Province1, George M. Weinstock1, Harold E. Varmus9, Stacey Gabriel2, Eric S. Lander2, Richard A. Gibbs3, Matthew Meyerson4, Matthew Meyerson2, Richard K. Wilson1 
23 Oct 2008-Nature
TL;DR: Somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B are found.
Abstract: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.

2,615 citations


Journal ArticleDOI
06 Nov 2008-Nature
TL;DR: This study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.
Abstract: Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

1,393 citations


Journal ArticleDOI
01 May 2008-Nature
TL;DR: This work employs a clone-based method to interrogate intermediate structural variation in eight individuals of diverse geographic ancestry and provides the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
Abstract: Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.

1,183 citations


Journal ArticleDOI
Wesley C. Warren1, LaDeana W. Hillier1, Jennifer A. Marshall Graves2, Ewan Birney, Chris P. Ponting3, Frank Grützner4, Katherine Belov5, Webb Miller6, Laura Clarke7, Asif T. Chinwalla1, Shiaw Pyng Yang1, Andreas Heger3, Devin P. Locke1, Pat Miethke2, Paul D. Waters2, Frédéric Veyrunes8, Frédéric Veyrunes2, Lucinda Fulton1, Bob Fulton1, Tina Graves1, John W. Wallis1, Xose S. Puente9, Carlos López-Otín9, Gonzalo R. Ordóñez9, Evan E. Eichler10, Lin Chen10, Ze Cheng10, Janine E. Deakin2, Amber E. Alsop2, Katherine Thompson2, Patrick J. Kirby2, Anthony T. Papenfuss11, Matthew Wakefield11, Tsviya Olender12, Doron Lancet12, Gavin A. Huttley2, Arian F.A. Smit13, Andrew J Pask14, Peter Temple-Smith14, Peter Temple-Smith15, Mark A. Batzer16, Jerilyn A. Walker16, Miriam K. Konkel16, Robert S. Harris6, Camilla M. Whittington5, Emily S. W. Wong5, Neil J. Gemmell17, Emmanuel Buschiazzo17, Iris M. Vargas Jentzsch17, Angelika Merkel17, Juergen Schmitz18, Anja Zemann18, Gennady Churakov18, Jan Ole Kriegs18, Juergen Brosius18, Elizabeth P. Murchison19, Ravi Sachidanandam19, Carly Smith19, Gregory J. Hannon19, Enkhjargal Tsend-Ayush4, Daniel McMillan2, Rosalind Attenborough2, Willem Rens8, Malcolm A. Ferguson-Smith8, Christophe Lefevre20, Christophe Lefevre14, Julie A. Sharp14, Kevin R. Nicholas14, David A. Ray21, Michael Kube, Richard Reinhardt, Thomas H. Pringle, James Taylor22, Russell C. Jones, Brett Nixon, Jean Louis Dacheux23, Hitoshi Niwa, Yoko Sekita, Xiaoqiu Huang24, Alexander Stark25, Pouya Kheradpour25, Manolis Kellis25, Paul Flicek, Yuan Chen, Caleb Webber3, Ross C. Hardison, Joanne O. Nelson1, Kym Hallsworth-Pepin1, Kim D. Delehaunty1, Chris Markovic1, Patrick Minx1, Yucheng Feng1, Colin Kremitzki1, Makedonka Mitreva1, Jarret Glasscock1, Todd Wylie1, Patricia Wohldmann1, Prathapan Thiru1, Michael N. Nhan1, Craig Pohl1, Scott M. Smith1, Shunfeng Hou1, Marilyn B. Renfree14, Elaine R. Mardis1, Richard K. Wilson1 
08 May 2008-Nature
TL;DR: It is found that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypUS biology.
Abstract: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus This monotreme exhibits a fascinating combination of reptilian and mammalian characters For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles Analysis of the first monotreme genome aligned these features with genetic innovations We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation

653 citations


Journal ArticleDOI
TL;DR: This study sequenced a Caernohabditis elegans N2 Bristol strain isolate and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation, demonstrating the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.
Abstract: Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation. Massively parallel sequencing facilitates strain-to-reference comparison for genome-wide sequence variant discovery. Owing to the short-read-length sequences produced, we developed a revised approach to determine the regions of the genome to which short reads could be uniquely mapped. We then aligned Solexa reads from C. elegans strain CB4858 to the reference, and screened for single-nucleotide polymorphisms (SNPs) and small indels. This study demonstrates the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.

447 citations


Journal ArticleDOI
TL;DR: Comparison genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.
Abstract: Here we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi. Compared to C. elegans, the P. pacificus genome has more genes encoding cytochrome P450 enzymes, glucosyltransferases, sulfotransferases and ABC transporters, many of which were experimentally validated. The P. pacificus genome contains genes encoding cellulase and diapausin, and cellulase activity is found in P. pacificus secretions, indicating that cellulases can be found in nematodes beyond plant parasites. The relatively higher number of detoxification and degradation enzymes in P. pacificus is consistent with its necromenic lifestyle and might represent a preadaptation for parasitism. Thus, comparative genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.

332 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis.
Abstract: Genetic lesions affecting a number of kinases and other elements within the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the pathogenesis of human non-small-cell lung cancer (NSCLC). We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this pathway that could contribute to lung tumorigenesis. We have identified in 2 of 207 primary lung tumors a somatic activating mutation in exon 2 of MEK1 (i.e., mitogen-activated protein kinase kinase 1 or MAP2K1) that substitutes asparagine for lysine at amino acid 57 (K57N) in the nonkinase portion of the kinase. Neither of these two tumors harbored known mutations in other genes encoding components of the EGFR signaling pathway (i.e., EGFR, HER2, KRAS, PIK3CA, and BRAF). Expression of mutant, but not wild-type, MEK1 leads to constitutive activity of extracellular signal-regulated kinase (ERK)-1/2 in human 293T cells and to growth factor-independent proliferation of murine Ba/F3 cells. A selective MEK inhibitor, AZD6244, inhibits mutant-induced ERK activity in 293T cells and growth of mutant-bearing Ba/F3 cells. We also screened 85 NSCLC cell lines for MEK1 exon 2 mutations; one line (NCI-H1437) harbors a Q56P substitution, a known transformation-competent allele of MEK1 originally identified in rat fibroblasts, and is sensitive to treatment with AZD6244. MEK1 mutants have not previously been reported in lung cancer and may provide a target for effective therapy in a small subset of patients with lung adenocarcinoma.

209 citations


Journal ArticleDOI
TL;DR: The analysis favors the H2 configuration and sequence haplotype as the likely great ape and human ancestral state, with inversion recurrences during primate evolution, perhaps explaining its tendency to undergo microdeletion associated with mental retardation in European populations.
Abstract: Using comparative sequencing approaches, we investigated the evolutionary history of the European-enriched 17q21.31 MAPT inversion polymorphism. We present a detailed, BAC-based sequence assembly of the inverted human H2 haplotype and compare it to the sequence structure and genetic variation of the corresponding 1.5-Mb region for the noninverted H1 human haplotype and that of chimpanzee and orangutan. We found that inversion of the MAPT region is similarly polymorphic in other great ape species, and we present evidence that the inversions occurred independently in chimpanzees and humans. In humans, the inversion breakpoints correspond to core duplications with the LRRC37 gene family. Our analysis favors the H2 configuration and sequence haplotype as the likely great ape and human ancestral state, with inversion recurrences during primate evolution. We show that the H2 architecture has evolved more extensive sequence homology, perhaps explaining its tendency to undergo microdeletion associated with mental retardation in European populations.

187 citations


Journal ArticleDOI
TL;DR: The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.
Abstract: Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N2-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.

159 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation.
Abstract: Background: Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results: The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-e-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion: We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-αβ-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of βglobin genes with different expression profiles in different lineages.

Journal ArticleDOI
TL;DR: This study has provided novel insights into the nematode intestine and lays foundations for further comparative studies on biology, parasitism, and evolution within the phylum Nematoda.
Abstract: Background: The nematode intestine is a major organ responsible for nutrient digestion and absorption; it is also involved in many other processes, such as reproduction, innate immunity, stress responses, and aging. The importance of the intestine as a target for the control of parasitic nematodes has been demonstrated. However, the lack of detailed knowledge on the molecular and cellular functions of the intestine and the level of its conservation across nematodes has impeded breakthroughs in this application. Methods and Findings: As part of an extensive effort to investigate various transcribed genomes from Ascaris suum and Haemonchus contortus, we generated a large collection of intestinal sequences from parasitic nematodes by identifying 3,121 A. suum and 1,755 H. contortus genes expressed in the adult intestine through the generation of expressed sequence tags. Cross-species comparisons to the intestine of the free-living C. elegans revealed substantial diversification in the adult intestinal transcriptomes among these species, suggesting lineage- or species-specific adaptations during nematode evolution. In contrast, significant conservation of the intestinal gene repertories was also evident, despite the evolutionary distance of ,350 million years separating them. A group of 241 intestinal protein families (IntFam-241), each containing members from all three species, was identified based on sequence similarities. These conserved proteins accounted for ,20% of the sampled intestinal transcriptomes from the three nematodes and are proposed to represent conserved core functions in the nematode intestine. Functional characterizations of the IntFam-241 suggested important roles in molecular functions such as protein kinases and proteases, and biological pathways of carbohydrate metabolism, energy metabolism, and translation. Conservation in the core protein families was further explored by extrapolating observable RNA interference phenotypes in C. elegans to their parasitic counterparts.

Journal ArticleDOI
TL;DR: The genome size of the canine hookworm is estimated by flow cytometry of isolated nuclei to be substantially larger than other Rhabditina species, and functional classifications of many of the 70% of genes with homology to genes in other species are provided.

Journal ArticleDOI
TL;DR: The potential application of this resource in understanding the pattern of genetic variation in complex regions of the genome that may not be adequately resolved by next-generation sequencing technology or SNP haplotype imputation is discussed.
Abstract: An important goal of human genetics and genomics is to understand the complete spectrum of genetic variation across a specific human haplotype. By combining information from a dense SNP map with fosmid end-sequence pairs (ESPs) aligned to the human genome reference sequence, we have developed a simple method to resolve human haplotypes using a previously developed clone resource. By partitioning ESPs into either haplotype, we have generated a haplotype-specific clone map for eight diploid genomes (four Yoruba African and four non-African samples). On average, 59% of each haploid genome is covered by haplotype-assigned clones with an N50 length of 110 kbp. By comparing this clone-based haplotype map against HapMap phased data sets, we estimate an error rate of 0.71% when trio information is available and 6.6% in its absence. We present these data in the form of an interactive browser that allows clones corresponding to specific haplotypes to be recovered and sequenced within these eight human genomes. As an example, we sequenced 165 fosmid clone inserts to generate 6.8 Mbp of sequenced haplotypes, and demonstrate its utility in uncovering phase-switching errors and for the discovery of novel SNPs especially in Asian and African samples. We discuss the potential application of this resource in understanding the pattern of genetic variation in complex regions of the genome that may not be adequately resolved by next-generation sequencing technology or SNP haplotype imputation.

Journal ArticleDOI
TL;DR: A differential strategy is formalized for tumor/normal studies wherein tumor samples are sequenced more deeply than normal ones, and the model gives pragmatic estimates for required redundancy.
Abstract: Background DNA sequencing is now emerging as an important component in biomedical studies of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used heavily for such projects, but many design specifications have yet to be conclusively established. Perhaps the most fundamental of these is the redundancy required to detect sequence variations, which bears directly upon genomic coverage and the consequent resolving power for discerning somatic mutations.

Journal Article
Wesley C. Warren, LaDeana W. Hillier, Jennifer A. Marshall Graves, Ewan Birney, Chris P. Ponting, Frank Grützner, Katherine Belov, Webb Miller, Laura Clarke, Asif T. Chinwalla, Shiaw-Pyng Yang, Andreas Heger, Devin P. Locke, Pat Miethke, Paul D. Waters, Frédéric Veyrunes, Lucinda Fulton, Bob Fulton, Tina Graves, John W. Wallis, Xose S. Puente, Carlos López-Otín, Gonzalo R. Ordóñez, Evan E. Eichler, Lin Chen, Ze Cheng, Janine E. Deakin, Amber E. Alsop, Katherine Thompson, Patrick J. Kirby, Anthony T. Papenfuss, Matthew Wakefield, Tsviya Olender, Doron Lancet, Gavin A. Huttley, Arian F.A. Smit, Andrew J Pask, Peter Temple-Smith, Mark A. Batzer, Jerilyn A. Walker, Miriam K. Konkel, Robert S. Harris, Camilla M. Whittington, Emily S. W. Wong, Neil J. Gemmell, Emmanuel Buschiazzo, Iris M. Vargas Jentzsch, Angelika Merkel, Juergen Schmitz, Anja Zemann, Gennady Churakov, Jan Ole Kriegs, Juergen Brosius, Elizabeth P. Murchison, Ravi Sachidanandam, Carly Smith, Gregory J. Hannon, Enkhjargal Tsend-Ayush, Daniel McMillan, Rosalind Attenborough, Willem Rens, Malcolm A. Ferguson-Smith, Christophe Lefevre, Julie A. Sharp, Kevin R. Nicholas, David A. Ray, Michael Kube, Richard Reinhardt, Thomas H. Pringle, James E. Taylor, Russell C. Jones, Brett Nixon, Jean-Louis Dacheux, Hitoshi Niwa, Yoko Sekita, Xiaoqiu Huang, Alexander Stark, Pouya Kheradpour, Manolis Kellis, Paul Flicek, Yuan Chen, Caleb Webber, Ross C. Hardison, Joanne O. Nelson, Kym Hallsworth-Pepin, Kim D. Delehaunty, Chris Markovic, Patrick Minx, Yucheng Feng, Colin Kremitzki, Makedonka Mitreva, Jarret Glasscock, Todd Wylie, Patricia Wohldmann, Prathapan Thiru, Michael N. Nhan, Craig Pohl, Scott M. Smith, Shunfeng Hou, Mikhail Nefedov, Pieter J. de Jong, Marilyn B. Renfree, Elaine R. Mardis, Richard K. Wilson 
01 Jan 2008-Nature