scispace - formally typeset
Search or ask a question
Author

Richard K. Wilson

Bio: Richard K. Wilson is an academic researcher from Nationwide Children's Hospital. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 173, co-authored 463 publications receiving 260000 citations. Previous affiliations of Richard K. Wilson include University of Washington & St. Jude Children's Research Hospital.
Topics: Genome, Gene, Exome sequencing, Genomics, Human genome


Papers
More filters
Journal ArticleDOI
TL;DR: Data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
Abstract: Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.

4,071 citations

Journal ArticleDOI
Timothy J. Ley1, Christopher A. Miller1, Li Ding1, Benjamin J. Raphael2, Andrew J. Mungall3, Gordon Robertson3, Katherine A. Hoadley4, Timothy J. Triche5, Peter W. Laird5, Jack Baty1, Lucinda Fulton1, Robert S. Fulton1, Sharon Heath1, Joelle Kalicki-Veizer1, Cyriac Kandoth1, Jeffery M. Klco1, Daniel C. Koboldt1, Krishna L. Kanchi1, Shashikant Kulkarni1, Tamara Lamprecht1, David E. Larson1, G. Lin1, Charles Lu1, Michael D. McLellan1, Joshua F. McMichael1, Jacqueline E. Payton1, Heather Schmidt1, David H. Spencer1, Michael H. Tomasson1, John W. Wallis1, Lukas D. Wartman1, Mark A. Watson1, John S. Welch1, Michael C. Wendl1, Adrian Ally3, Miruna Balasundaram3, Inanc Birol3, Yaron S.N. Butterfield3, Readman Chiu3, Andy Chu3, Eric Chuah3, Hye Jung E. Chun3, Richard Corbett3, Noreen Dhalla3, Ranabir Guin3, An He3, Carrie Hirst3, Martin Hirst3, Robert A. Holt3, Steven J.M. Jones3, Aly Karsan3, Darlene Lee3, Haiyan I. Li3, Marco A. Marra3, Michael Mayo3, Richard A. Moore3, Karen Mungall3, Jeremy Parker3, Erin Pleasance3, Patrick Plettner3, Jacquie Schein3, Dominik Stoll3, Lucas Swanson3, Angela Tam3, Nina Thiessen3, Richard Varhol3, Natasja Wye3, Yongjun Zhao3, Stacey Gabriel6, Gad Getz6, Carrie Sougnez6, Lihua Zou6, Mark D.M. Leiserson2, Fabio Vandin2, Hsin-Ta Wu2, Frederick Applebaum7, Stephen B. Baylin8, Rehan Akbani9, Bradley M. Broom9, Ken Chen9, Thomas C. Motter9, Khanh Thi-Thuy Nguyen9, John N. Weinstein9, Nianziang Zhang9, Martin L. Ferguson, Christopher Adams10, Aaron D. Black10, Jay Bowen10, Julie M. Gastier-Foster10, Thomas Grossman10, Tara M. Lichtenberg10, Lisa Wise10, Tanja Davidsen11, John A. Demchok11, Kenna R. Mills Shaw11, Margi Sheth11, Heidi J. Sofia, Liming Yang11, James R. Downing, Greg Eley, Shelley Alonso12, Brenda Ayala12, Julien Baboud12, Mark Backus12, Sean P. Barletta12, Dominique L. Berton12, Anna L. Chu12, Stanley Girshik12, Mark A. Jensen12, Ari B. Kahn12, Prachi Kothiyal12, Matthew C. Nicholls12, Todd Pihl12, David Pot12, Rohini Raman12, Rashmi N. Sanbhadti12, Eric E. Snyder12, Deepak Srinivasan12, Jessica Walton12, Yunhu Wan12, Zhining Wang12, Jean Pierre J. Issa13, Michelle M. Le Beau14, Martin Carroll15, Hagop M. Kantarjian, Steven M. Kornblau, Moiz S. Bootwalla5, Phillip H. Lai5, Hui Shen5, David Van Den Berg5, Daniel J. Weisenberger5, Daniel C. Link1, Matthew J. Walter1, Bradley A. Ozenberger11, Elaine R. Mardis1, Peter Westervelt1, Timothy A. Graubert1, John F. DiPersio1, Richard K. Wilson1 
TL;DR: It is found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients and the databases from this study are widely available to serve as a foundation for further investigations of AMl pathogenesis, classification, and risk stratification.
Abstract: BACKGROUND—Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined The relationships between patterns of mutations and epigenetic phenotypes are not yet clear METHODS—We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis RESULTS—AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes Of these, an average of 5 are in genes that are recurrently mutated in AML A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcriptionfactor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumorsuppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%) Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories CONCLUSIONS—We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification (Funded by the National Institutes of Health) The molecular pathogenesis of acute myeloid leukemia (AML) has been studied with the use of cytogenetic analysis for more than three decades Recurrent chromosomal structural variations are well established as diagnostic and prognostic markers, suggesting that acquired genetic abnormalities (ie, somatic mutations) have an essential role in pathogenesis 1,2 However, nearly 50% of AML samples have a normal karyotype, and many of these genomes lack structural abnormalities, even when assessed with high-density comparative genomic hybridization or single-nucleotide polymorphism (SNP) arrays 3-5 (see Glossary) Targeted sequencing has identified recurrent mutations in FLT3, NPM1, KIT, CEBPA, and TET2 6-8 Massively parallel sequencing enabled the discovery of recurrent mutations in DNMT3A 9,10 and IDH1 11 Recent studies have shown that many patients with

3,980 citations

Journal ArticleDOI
Patrick S. Schnable1, Doreen Ware2, Robert S. Fulton3, Joshua C. Stein2  +156 moreInstitutions (18)
20 Nov 2009-Science
TL;DR: The sequence of the maize genome reveals it to be the most complex genome known to date and the correlation of methylation-poor regions with Mu transposon insertions and recombination and how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state is reported.
Abstract: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.

3,761 citations

Journal ArticleDOI
Gad Getz1, Stacey Gabriel1, Kristian Cibulskis1, Eric S. Lander1  +280 moreInstitutions (31)
02 May 2013-Nature
TL;DR: In this paper, the authors performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array-and-sequencing-based technologies, and classified them into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy number high.
Abstract: We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.

3,719 citations

Journal ArticleDOI
TL;DR: A comprehensive search for conserved elements in vertebrate genomes is conducted, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes), using a two-state phylogenetic hidden Markov model (phylo-HMM).
Abstract: We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%-53%), Caenorhabditis elegans (18%-37%), and Saccharaomyces cerevisiae (47%-68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3' UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.

3,719 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations