scispace - formally typeset
Search or ask a question
Author

Richard K. Wilson

Bio: Richard K. Wilson is an academic researcher from Nationwide Children's Hospital. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 173, co-authored 463 publications receiving 260000 citations. Previous affiliations of Richard K. Wilson include University of Washington & St. Jude Children's Research Hospital.
Topics: Genome, Gene, Exome sequencing, Genomics, Human genome


Papers
More filters
Journal ArticleDOI
TL;DR: Near-infrared fluorescence provides a nonradioactive method of detection with high sensitivity and low background and has been utilized for detection of short tandem repeat polymorphisms (STRPs) which are useful for gene mapping, genetic diagnostics, forensic analysis, and paternity testing.
Abstract: Near-infrared fluorescence provides a nonradioactive method of detection with high sensitivity and low background. An infrared fluorophore has been attached covalently to the nucleotide deoxyadenosine triphosphate (dATP) to provide a reagent for enzymatic labeling of various types of DNA molecules and for facilitating their detection with an automated DNA sequencing and analysis system. DNA sequencing reaction products can be labeled internally by performing limited polymerization utilizing infrared-labeled dATP (IR-dATP) as the sole source of adenine deoxynucleotide prior to a dideoxy-specific termination reaction. PCR products can be labeled fluorescently by the addition of limited quantities of IR-dATP to the amplification reaction. This latter strategy has been utilized for detection of short tandem repeat polymorphisms (STRPs) which are useful for gene mapping, genetic diagnostics, forensic analysis, and paternity testing. Restriction fragments can be labeled also by fill-in reactions of appropriate 5' overhangs. Diminutive amounts of such fluorescently labeled DNA molecules can be visualized rapidly and conveniently using infrared detection technology.

36 citations

Journal ArticleDOI
TL;DR: This work describes simple algorithms for constructing and using a superword array to find pairs of sequences that share a unique superword in a genome assembly program called PCAP.REP for computation of overlaps between reads.
Abstract: We introduce a data structure called a superword array for finding quickly matches between DNA sequences. The superword array possesses some desirable features of the lookup table and suffix array. We describe simple algorithms for constructing and using a superword array to find pairs of sequences that share a unique superword. The algorithms are implemented in a genome assembly program called PCAP.REP for computation of overlaps between reads. Experimental results produced by PCAP.REP and PCAP on a whole-genome dataset show that PCAP.REP produced a more accurate and contiguous assembly than PCAP.

36 citations

Journal ArticleDOI
TL;DR: It is found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.
Abstract: To investigate the genomic evolution of metastatic pediatric osteosarcoma, we performed whole-genome and targeted deep sequencing on 14 osteosarcoma metastases and two primary tumors from four patients (two to eight samples per patient). All four patients harbored ancestral (truncal) somatic variants resulting in TP53 inactivation and cell-cycle aberrations, followed by divergence into relapse-specific lineages exhibiting a cisplatin-induced mutation signature. In three of the four patients, the cisplatin signature accounted for >40% of mutations detected in the metastatic samples. Mutations potentially acquired during cisplatin treatment included NF1 missense mutations of uncertain significance in two patients and a KIT G565R activating mutation in one patient. Three of four patients demonstrated widespread ploidy differences between samples from the sample patient. Single-cell seeding of metastasis was detected in most metastatic samples. Cross-seeding between metastatic sites was observed in one patient, whereas in another patient a minor clone from the primary tumor seeded both metastases analyzed. These results reveal extensive clonal heterogeneity in metastatic osteosarcoma, much of which is likely cisplatin-induced. Implications: The extent and consequences of chemotherapy-induced damage in pediatric cancers is unknown. We found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.

35 citations

Journal ArticleDOI
TL;DR: The FASSI method is simple to implement, potentially cost-effective, and has resulted in the increase of scaffold contiguity for both the Drosophila melanogaster and Cryptococcus gattii genomes when compared to a control assembly without map-derived constraints.
Abstract: We describe a targeted approach to improve the contiguity of whole-genome shotgun sequence (WGS) assemblies at run-time, using information from Bacterial Artificial Chromosome (BAC)-based physical maps. Clone sizes and overlaps derived from clone fingerprints are used for the calculation of length constraints between any two BAC neighbors sharing 40% of their size. These constraints are used to promote the linkage and guide the arrangement of sequence contigs within a sequence scaffold at the layout phase of WGS assemblies. This process is facilitated by FASSI, a stand-alone application that calculates BAC end and BAC overlap length constraints from clone fingerprint map contigs created by the FPC package. FASSI is designed to work with the assembly tool PCAP, but its output can be formatted to work with other WGS assembly algorithms able to use length constraints for individual clones. The FASSI method is simple to implement, potentially cost-effective, and has resulted in the increase of scaffold contiguity for both the Drosophila melanogaster and Cryptococcus gattii genomes when compared to a control assembly without map-derived constraints. A 6.5-fold coverage draft DNA sequence of the Pan troglodytes (chimpanzee) genome was assembled using map-derived constraints and resulted in a 26.1% increase in scaffold contiguity.

34 citations

Journal ArticleDOI
TL;DR: The observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine.
Abstract: Tumor heterogeneity and evolution drive treatment resistance in metastatic colorectal cancer (mCRC). Patient-derived xenografts (PDXs) can model mCRC biology; however, their ability to accurately mimic human tumor heterogeneity is unclear. Current genomic studies in mCRC have limited scope and lack matched PDXs. Therefore, the landscape of tumor heterogeneity and its impact on the evolution of metastasis and PDXs remain undefined. We performed whole-genome, deep exome, and targeted validation sequencing of multiple primary regions, matched distant metastases, and PDXs from 11 patients with mCRC. We observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection. Metastasis formation followed both monoclonal and polyclonal seeding models. In four cases, metastasis-seeding clones were not identified in any primary region, consistent with a metastasis-seeding-metastasis model. PDXs underrepresented the subclonal heterogeneity of parental tumors. These suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations