scispace - formally typeset
Search or ask a question
Author

Richard K. Wilson

Bio: Richard K. Wilson is an academic researcher from Nationwide Children's Hospital. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 173, co-authored 463 publications receiving 260000 citations. Previous affiliations of Richard K. Wilson include University of Washington & St. Jude Children's Research Hospital.
Topics: Genome, Gene, Exome sequencing, Genomics, Human genome


Papers
More filters
Journal ArticleDOI
TL;DR: Optimal project-wide redundancy and sample size are shown to be inversely proportional to the desired variant frequency, and optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future.
Abstract: Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future.

14 citations

Journal ArticleDOI
TL;DR: The characteristics of disease‐causing variants in BICD2 that distinguish them from benign variation are identified and genotype–phenotype correlations are performed for 99 Bicaudal D cargo adaptor 2 variant carriers from 35 families.
Abstract: The bicaudal D cargo adaptor 2 (BICD2) gene encodes a conserved cargo adaptor protein required for dynein-mediated transport. Inherited and de novo variants in BICD2 cause SMALED2 (spinal muscular atrophy lower extremity dominant 2), and a subset have recently been reported to cause severe, often lethal disease. However, a true genotype-phenotype correlation for BICD2 has not been performed, and cases described to date are scattered among at least 14 publications. In this review, we identify the characteristics of disease-causing variants in BICD2 that distinguish them from benign variation and perform genotype-phenotype correlations for 99 BICD2 variant carriers from 35 families. ANN NEUROL 2020;87:487-496.

14 citations

Journal ArticleDOI
29 Dec 2015-PLOS ONE
TL;DR: It is hypothesized that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests the whole-body transcriptomic approach merits further use.
Abstract: The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

14 citations

Journal ArticleDOI
Coen M. Adema, LaDeana W. Hillier, Catherine S. Jones, Eric S. Loker, Matty Knight, Patrick Minx, Guilherme Oliveira, Nithya Raghavan, Andrew M. Shedlock, Laurence Rodrigues do Amaral, Halime D. Arican-Goktas, Juliana G Assis, Elio Hideo Baba, Olga Baron, Christopher J. Bayne, Utibe Bickham-Wright, Kyle K. Biggar, Michael S. Blouin, Bryony C. Bonning, Chris Botka, Joanna M. Bridger, Katherine M. Buckley, Sarah K. Buddenborg, Roberta Lima Caldeira, Julia B. Carleton, Omar dos Santos Carvalho, Maria G. Castillo, Iain W. Chalmers, Mikkel Christensens, Sandra W. Clifton, Céline Cosseau, Christine Coustau, Richard M. Cripps, Yesid Cuesta-Astroz, Scott F. Cummins, Leon Di Stefano, Nathalie Dinguirard, David Duval, Scott J. Emrich, Cédric Feschotte, René Feyereisen, Peter C. FitzGerald, Catrina Fronick, Lucinda Fulton, Richard Galinier, Sandra Grossi Gava, Michael E. Geusz, Kathrin K. Geyer, Gloria I. Giraldo-Calderón, Matheus de Souza Gomes, Michelle A. Gordy, Benjamin Gourbal, Christoph Grunau, Patrick C. Hanington, Karl F. Hoffmann, Daniel S.T. Hughes, Judith E. Humphries, Daniel J. Jackson, Liana K. Jannotti-Passos, Wander de Jesus Jeremias, Susan Jobling, Bishoy Kamel, Aurélie Kapusta, Satwant Kaur, Joris M. Koene, Andrea B. Kohn, Daniel Lawson, Scott P Lawton, Di Liang, Yanin Limpanont, Sijun Liu, Anne E. Lockyer, TyAnna L. Lovato, Fernanda Ludolf, Vince Magrini, Donald P. McManus, Mónica Medina, Milind Misra, Guillaume Mitta, Gerald M. Mkoji, Michael J. Montague, Cesar E. Montelongo, Leonid L. Moroz, Monica Munoz-Torres, Umar Niazi, Leslie R. Noble, Francislon Silva de Oliveira, Fabiano Sviatopolk-Mirsky Pais, Anthony T. Papenfuss, Rob Peace, Janeth J. Pena, Emmanuel A. Pila, Titouan Quelais, Brian J. Raney, Jonathan P. Rast, David Rollinson, Izinara C Rosse, Bronwyn Rotgans, Edwin J. Routledge, Kathryn M. Ryan, Larissa L. S. Scholte, Kenneth B. Storey, Martin T. Swain, Jacob A. Tennessen, Chad Tomlinson, Damian L. Trujillo, Emanuela V. Volpi, Anthony J. Walker, Tianfang Wang, Ittiprasert Wannaporn, Wesley C. Warren, Xiao-Jun Wu, Timothy P. Yoshino, Mohammed Yusuf, Si-Ming Zhang, Min Zhao, Richard K. Wilson 
TL;DR: This corrects the article DOI: 10.1038/ncomms15451 to indicate that the author of the paper is a doctor rather than a scientist, as previously reported.
Abstract: Nature Communications 8: Article number: 15451 (2017); Published 16 May 2017; Updated 23 August 2017 The original version of this Article contained an error in the spelling of the author Leon Di Stefano, which was incorrectly given as Leon di Stephano. This has now been corrected in both the PDF andHTML versions of the Article.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations