scispace - formally typeset
Search or ask a question
Author

Richard L. Lindroth

Bio: Richard L. Lindroth is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Population & Quaking Aspen. The author has an hindex of 65, co-authored 233 publications receiving 15993 citations. Previous affiliations of Richard L. Lindroth include University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.
Abstract: This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life-history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.

2,114 citations

Journal ArticleDOI
TL;DR: This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.
Abstract: Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

1,034 citations

Journal ArticleDOI
01 Mar 2003-Ecology
TL;DR: It is demonstrated that the extended phenotype can be traced from the individuals possessing the trait, to the community, and to ecosystem processes such as leaf litter decomposition and N mineralization, which provides a genetic framework for community structure and ecosystem processes.
Abstract: We present evidence that the heritable genetic variation within individual species, especially dominant and keystone species, has community and ecosystem conse- quences. These consequences represent extended phenotypes, i.e., the effects of genes at levels higher than the population. Using diverse examples from microbes to vertebrates, we demonstrate that the extended phenotype can be traced from the individuals possessing the trait, to the community, and to ecosystem processes such as leaf litter decomposition and N mineralization. In our development of a community genetics perspective, we focus on intraspecific genetic variation because the extended phenotypes of these genes can be passed from one generation to the next, which provides a mechanism for heritability. In support of this view, common-garden experiments using synthetic crosses of a dominant tree show that their progeny tend to support arthropod communities that resemble those of their parents. We also argue that the combined interactions of extended phenotypes con- tribute to the among-community variance in the traits of individuals within communities. The genetic factors underlying this among-community variance in trait expression, partic- ularly those involving genetic interactions among species, constitute community heritability. These findings have diverse implications. (1) They provide a genetic framework for un- derstanding community structure and ecosystem processes. The effects of extended phe- notypes at these higher levels need not be diffuse; they may be direct or may act in relatively few steps, which enhances our ability to detect and predict their effects. (2) From a con- servation perspective, we introduce the concept of the minimum viable interacting popu- lation (MVIP), which represents the size of a population needed to maintain genetic diversity at levels required by other interacting species in the community. (3) Genotype 3 environ- ment interactions in dominant and keystone species can shift extended phenotypes to have unexpected consequences at community and ecosystem levels, an issue that is especially important as it relates to global change. (4) Documenting community heritability justifies a community genetics perspective and is an essential first step in demonstrating community evolution. (5) Community genetics requires and promotes an integrative approach, from genes to ecosystems, that is necessary for the marriage of ecology and genetics. Few studies span from genes to ecosystems, but such integration is probably essential for understanding the natural world.

640 citations

Journal ArticleDOI
01 Apr 1993-Ecology
TL;DR: It is illustrated that tree productivity and chemistry, and the performance of associated insects, will change under CO2 atmospheres predicted for the next century, and relative increases in tree growth rates will be greatest for aspen and least for maple.
Abstract: Although rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems, little is known of how specific ecological interactions will be modified. This research evaluated the effects of enriched CO2 on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen (Populus tre- muloides), red oak (Quercus rubra), sugar maple (Acer saccharum)) that span a range from fast to slow growing, and two species of leaf-feeding insects (gypsy moth (Lymantria dispar) and forest tent caterpillar (Malacosoma disstria)). Carbon-nutrient balance theory provided a framework for tests of three hypoth- eses; in response to enriched CO2: (1) relative increases in tree growth rates will be greatest for aspen and least for maple, (2) relative decreases in protein and increases in carbon-based compounds will be greatest for aspen and least for maple, and (3) relative reductions in performance will be greatest for insects fed aspen and least for insects fed maple. We grew 1-yr-old seedlings for 60 d under ambient (385 ? 5 AL/ L) or elevated (642 ? 2 pL/L) CO2 regimes at the University of Wisconsin Biotron. After 50 d, we conducted feeding trials with penultimate-instar gypsy moth and forest tent caterpillars. After 60 d, a second set of trees was harvested and partitioned into root, stem, and leaf tissues. We subsequently analyzed leaf material for a variety of compounds known to affect performance of insect herbivores. In terms of actual dry-matter production, aspen responded the most to enriched CO2 atmospheres whereas maple responded the least. Proportional growth increases (relative to ambient plants), however, were highest for oak and least for maple. Effects of elevated CO2 on biomass allocation patterns differed among the three species; root-to-shoot ratios increased in aspen, decreased in oak, and did not change in maple. Enriched CO2 altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Aspen showed the largest change in storage carbon compounds (starch), whereas maple experienced the largest change in defensive carbon compounds (con- densed and hydrolyzable tannins). Consumption rates of insects fed high-CO2 aspen increased dramatically, but growth rates declined. The two species of insects differed in response to oak and maple grown under enriched CO2. Gypsy moths grew better on high-CO2 oak, whereas forest tent caterpillars were unaffected; tent caterpillars tended to grow less on high-CO2 maple, whereas gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. Responses of plants and insects agreed with some, but not all, of the predictions of carbon-nutrient balance theory. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO2 atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated.

443 citations

Journal ArticleDOI
TL;DR: O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 2 -tolerant clones and across various trophic levels, and implications for carbon sequestration, plantations to reduce excess CO 2, and global models of forest productivity and climate change are presented.
Abstract: Summary 1. The impacts of elevated atmospheric CO 2 and/or O 3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O 3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera , and the determinate, late successional, O 3 -tolerant species Sugar Maple, Acer saccharum ). 2. The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O 3 -tolerant as well as O 3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34‐36 nL L − 1 during the summer daylight hours), O 3 offsets or moderates the responses induced by elevated CO 2 . 3. After 3 years of exposure to 560 µ mol mol − 1 CO 2 , the above-ground volume of Aspen stands was 40% above those grown at ambient CO 2 , and there was no indication of a diminishing growth trend. In contrast, O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO 2 , and global models of forest productivity and climate change are presented.

287 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations