scispace - formally typeset
Search or ask a question
Author

Richard M.J. Palmer

Bio: Richard M.J. Palmer is an academic researcher from Wellcome Trust. The author has contributed to research in topics: Nitric oxide & Omega-N-Methylarginine. The author has an hindex of 52, co-authored 73 publications receiving 57785 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 1987-Nature
TL;DR: NO released from endothelial cells is indistinguishable from EDRF in terms of biological activity, stability, and susceptibility to an inhibitor and to a potentiator.
Abstract: Endothelium-derived relaxing factor (EDRF) is a labile humoral agent which mediates the action of some vasodilators. Nitrovasodilators, which may act by releasing nitric oxide (NO), mimic the effect of EDRF and it has recently been suggested by Furchgott that EDRF may be NO. We have examined this suggestion by studying the release of EDRF and NO from endothelial cells in culture. No was determined as the chemiluminescent product of its reaction with ozone. The biological activity of EDRF and of NO was measured by bioassay. The relaxation of the bioassay tissues induced by EDRF was indistinguishable from that induced by NO. Both substances were equally unstable. Bradykinin caused concentration-dependent release of NO from the cells in amounts sufficient to account for the biological activity of EDRF. The relaxations induced by EDRF and NO were inhibited by haemoglobin and enhanced by superoxide dismutase to a similar degree. Thus NO released from endothelial cells is indistinguishable from EDRF in terms of biological activity, stability, and susceptibility to an inhibitor and to a potentiator. We suggest that EDRF and NO are identical.

10,739 citations

Journal ArticleDOI
16 Jun 1988-Nature
TL;DR: It is demonstrated that NO can be synthesized from L-arginine by porcine aortic endothelial cells in culture and the strict substrate specificity of this reaction suggests that L- arginine is the precursor for NO synthesis in vascular endothelium cells.
Abstract: Nitric oxide (NO) released by vascular endothelial cells accounts for the relaxation of strips of vascular tissue1 and for the inhibition of platelet aggregation2 and platelet adhesion3 attributed to endothelium-derived relaxing factor4. We now demonstrate that NO can be synthesized from L-arginine by porcine aortic endothelial cells in culture. Nitric oxide was detected by bioassay5, chemiluminescence1 or by mass spectrometry. Release of NO from the endothelial cells induced by bradykinin and the calcium ionophore A23187 was reversibly enhanced by infusions of L-arginine and L-citrulline, but not D-arginine or other close structural analogues. Mass spectrometry studies using 15N-labelled L-arginine indicated that this enhancement was due to the formation of NO from the terminal guanidino nitrogen atom(s) of L-arginine. The strict substrate specificity of this reaction suggests that L-arginine is the precursor for NO synthesis in vascular endothelial cells.

4,803 citations

Journal ArticleDOI
01 Apr 1986-Nature
TL;DR: It is demonstrated that EDRF is protected from breakdown by superoxide dismutase (SOD) and Cu2+, but not by catalase, and is inactivated by Fe2+.
Abstract: Endothelium-derived vascular relaxing factor (EDRF) is a humoral agent that is released by vascular endothelium and mediates vasodilator responses induced by various substances including acetylcholine and bradykinin. EDRF is very unstable, with a half-life of between 6 and 50 s, and is clearly distinguishable from prostacyclin. The chemical structure of EDRF is unknown but it has been suggested that it is either a hydroperoxy- or free radical-derivative of arachidonic acid or an unstable aldehyde, ketone or lactone. We have examined the role of superoxide anion (O-2) in the inactivation of EDRF released from vascular endothelial cells cultured on microcarrier beads and bioassayed using a cascade of superfused aortic smooth muscle strips. With this system, we have now demonstrated that EDRF is protected from breakdown by superoxide dismutase (SOD) and Cu2+, but not by catalase, and is inactivated by Fe2+. These findings indicate that O-2 contributes significantly to the instability of EDRF.

2,434 citations

Journal ArticleDOI
TL;DR: Results indicate that l‐NMMA, l‐NIO and l‐NAME are inhibitors of NO synthase in the vascular endothelium and confirm the important role of NO synthesis in the maintenance of vascular tone and blood pressure.
Abstract: 1. Three analogues of L-arginine were characterized as inhibitors of endothelial nitric oxide (NO) synthase by measuring their effect on the endothelial NO synthase from porcine aortae, on the vascular tone of rings of rat aorta and on the blood pressure of the anaesthetized rat. 2. NG-monomethyl-L-arginine (L-NMMA), N-iminoethyl-L-ornithine (L-NIO) and NG-nitro-L-arginine methyl ester (L-NAME; all at 0.1-100 microM) caused concentration-dependent inhibition of the Ca2(+)-dependent endothelial NO synthase from porcine aortae. 3. L-NMMA, L-NIO and L-NAME caused an endothelium-dependent contraction and an inhibition of the endothelium-dependent relaxation induced by acetylcholine (ACh) in aortic rings. 4. L-NMMA, L-NIO and L-NAME (0.03-300 mg kg-1, i.v.) induced a dose-dependent increase in mean systemic arterial blood pressure accompanied by bradycardia. 5. L-NMMA, L-NIO and L-NAME (100 mg kg-1, i.v.) inhibited significantly the hypotensive responses to ACh and bradykinin. 6. The increase in blood pressure and bradycardia produced by these compounds were reversed by L-arginine (30-100 mg kg-1, i.v.) in a dose-dependent manner. 7. All of these effects were enantiomer specific. 8. These results indicate that L-NMMA, L-NIO and L-NAME are inhibitors of NO synthase in the vascular endothelium and confirm the important role of NO synthesis in the maintenance of vascular tone and blood pressure.

1,922 citations


Cited by
More filters
Journal ArticleDOI
31 Mar 1988-Nature
TL;DR: Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelins is an endogenous modulator of voltage-dependent ion channels.
Abstract: An endothelium-derived 21-residue vasoconstrictor peptide, endothelin, has been isolated, and shown to be one of the most potent vasoconstrictors known. Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelin is an endogenous modulator of voltage-dependent ion channels. Expression of the endothelin gene is regulated by several vasoactive agents, indicating the existence of a novel cardiovascular control system.

10,651 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: It is proposed that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO under pathological conditions by preventing the formation of peroxynitrite.
Abstract: Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.

7,027 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations

Journal ArticleDOI
TL;DR: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes.
Abstract: The discovery that mammalian cells generate nitric oxide, a gas previously considered to be merely an atmospheric pollutant, is providing important information about many biologic processes. Nitric oxide is synthesized from the amino acid L-arginine by a family of enzymes, the nitric oxide synthases, through a hitherto unrecognized metabolic route -- namely, the L-arginine-nitric oxide pathway1–8. The synthesis of nitric oxide by vascular endothelium is responsible for the vasodilator tone that is essential for the regulation of blood pressure. In the central nervous system nitric oxide is a neurotransmitter that underpins several functions, including the formation of memory. . . .

6,464 citations