scispace - formally typeset
Search or ask a question
Author

Richard M. Noyes

Other affiliations: Max Planck Society
Bio: Richard M. Noyes is an academic researcher from University of Oregon. The author has contributed to research in topics: Bromate & Reaction rate constant. The author has an hindex of 38, co-authored 184 publications receiving 7244 citations. Previous affiliations of Richard M. Noyes include Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors generalized the chemical mechanism of Field, Koros, and Noyes for the oscillatory Belousov reaction by a model composed of five steps involving three independent chemical intermediates.
Abstract: The chemical mechanism of Field, Koros, and Noyes for the oscillatory Belousov reaction has been generalized by a model composed of five steps involving three independent chemical intermediates. The behavior of the resulting differential equations has been examined numerically, and it has been shown that the system traces a stable closed trajectory in three dimensional phase space. The same trajectory is attained from other phase points and even from the point corresponding to steady state solution of the differential equations. The model appears to exhibit limit cycle behavior. By stiffly coupling the concentrations of two of the intermediates, the limit cycle model can be simplified to a system described by two independent variables; this coupled system is amenable to analysis by theoretical techniques already developed for such systems.

1,172 citations

Journal ArticleDOI
TL;DR: In this paper, an improved method was developed for evaluating the changes in thermodynamic properties associated with hydration of individual species of gaseous monatomic ions, and the partial molal entropy of hydrogen ion at 25 deg was estimated to be -3.3 cal/mole deg in satisfactory agreement with thermocell calculations.
Abstract: An improved method was developed for evaluating the changes in thermodynamic properties associated with hydration of individual species of gaseous monatomic ions. Application of the method to entropy data leads to consistent results only by neglecting the contributions observed during solvation of neutral atoms of the same size. The partial molal entropy of hydrogen ion at 25 deg is estimated to be -3.3 cal/mole deg in satisfactory agreement with thermocell calculations. For cations having the electronic structure of an inert gas, the free energies of hydration indicate effective dielectric constants that depend only on size of ion and are virtually independent of charge. These effective dielectric constants can be used to estimate local dielectric constant as a function of distance from the center of a cation, but the data are not sensitive enough to permit extrapolation beyond the radius of the largest cation studied. Cations not having an inent gas structure show larger absolute enthalpies and free energies of hydration as predicted by ligand field theory, The singly charged d/sup 10/ ions Cu/sup +/, Ag/sup +/, and Au/sup +/ exhibit extreme solvation effects that are not observed for any other ions, including the isoelectronic species Zn/sup 2+/, Cd/sup 2+/, andmore » Hg/sup 2+/. Thermodynamic properties change more during the hydration of anions than for cations of the same size, and the few available data do not exhibit the monatonic variation with ionic size that is observed with cations. (auth)« less

413 citations

Journal ArticleDOI
TL;DR: In this paper, the reaction time of a mixture of molecules in a medium containing other molecules able to react with it has been analyzed as a function of the time since its formation.
Abstract: If a molecule is produced in a medium containing molecules able to react with it, its instantaneous reactivity is a function of the time since its formation. At very short times the reactivity is determined by the conventional ``true'' rate constant k, which is the product of the rate constant for encounters and the probability of reaction during an encounter. At long times (10—9 sec or greater in many liquids), the reactivity falls to a value determined by the ``long‐time'' rate constant k′. The constants k and k′ differ by the factor 1 — β′, where β′ is the probability that a specific pair of molecules separating from a nonreactive encounter will ultimately react with each other. If β′ is small either because there is little chance of reaction per encounter (activation control), or because there is little chance the specific pair will undergo a subsequent encounter (as in gas phase), the two rate constants are virtually identical and conventional kinetics apply.Equations are developed for the time depen...

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: These efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework are described, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models.
Abstract: Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within t...

2,550 citations

Journal ArticleDOI
TL;DR: The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

2,548 citations

Journal ArticleDOI
TL;DR: In this paper, the notion of qualitative information and the practicalities of extracting it from experimental data were considered, based on ideas from the generalized theory of information known as singular system analysis due to Bertero, Pike and co-workers.

2,158 citations