scispace - formally typeset
Search or ask a question
Author

Richard Mattana

Bio: Richard Mattana is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Spintronics & Magnetoresistance. The author has an hindex of 30, co-authored 69 publications receiving 4061 citations. Previous affiliations of Richard Mattana include University of Paris & University of Paris-Sud.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the metal/organic interface is found to be key for spin injection in organic semiconductors, and the authors investigated how to optimize the injection of spin into these materials.
Abstract: Organic semiconductors are attractive candidates for spintronics applications because of their long spin lifetimes. But few studies have investigated how to optimize the injection of spin into these materials. A new study suggests that the metal/organic interface is key.

551 citations

Journal ArticleDOI
TL;DR: A demonstration of the ability to transmit spin currents over distances of more than one hundred micrometres with an efficiency of up to 75% in graphene grown epitaxially on silicon carbide improves the prospects of graphene-based spintronic devices.
Abstract: A demonstration of the ability to transmit spin currents over distances of more than one hundred micrometres with an efficiency of up to 75% in graphene grown epitaxially on silicon carbide improves the prospects of graphene-based spintronic devices

376 citations

Journal ArticleDOI
TL;DR: In this paper, a high-TC (>400 K) ferromagnetic phase of (Ge,Mn) epitaxial layer is reported, and the average diameter of these nanocolumns is 3 nm and their spacing is 10nm.
Abstract: The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400 K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3 nm and their spacing is 10nm. Their composition is close to Ge2Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400 K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9 T, with no evidence of saturation.

336 citations

Journal ArticleDOI
TL;DR: Surprisingly, and in contrast with previous theoretical predictions, the polarization does not increase dramatically with c/a, so there is evidence for the epitaxial stabilization of a monoclinic phase of BiFeO3 with a giant axial ratio that is both ferroelectric and magnetic at room temperature.
Abstract: In the search for multiferroic materials magnetic compounds with a strongly elongated unit-cell (large axial ratio $c/a$) have been scrutinized intensely However, none was hitherto proven to have a switchable polarization, an essential feature of ferroelectrics Here, we provide evidence for the epitaxial stabilization of a monoclinic phase of ${\mathrm{BiFeO}}_{3}$ with a giant axial ratio ($c/a=123$) that is both ferroelectric and magnetic at room temperature Surprisingly, and in contrast with previous theoretical predictions, the polarization does not increase dramatically with $c/a$ We discuss our results in terms of the competition between polar and antiferrodistortive instabilities and give perspectives for engineering multiferroic phases

320 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure and magnetic properties of cobalt substituted ZnO thin films deposited on sapphire (0001) substrates by pulsed laser deposition were investigated.
Abstract: We have investigated the microstructure and the magnetic properties of cobalt substituted ZnO thin films deposited on sapphire (0001) substrates by pulsed laser deposition. We have optimized the growth condition using in situ monitoring by reflection high-energy electron diffraction. We found that ferromagnetic films need to be grown at low oxygen partial pressure (<10−6 Torr). Films with 25% of Co are ferromagnetic at room temperature with clear out-of-plane anisotropy. We have looked for spurious origins of the ferromagnetic signal and found none.

228 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.

2,743 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Abstract: Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

2,191 citations