scispace - formally typeset
Search or ask a question
Author

Richard Miller

Bio: Richard Miller is an academic researcher. The author has contributed to research in topics: Peak oil & Oil depletion. The author has an hindex of 5, co-authored 8 publications receiving 750 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The UK Energy Research Centre (UKERC) as mentioned in this paper conducted an independent, thorough and systematic review of the evidence, with the aim of establishing the current state of knowledge, identifying key uncertainties and improving consensus.

342 citations

01 Aug 2009
TL;DR: In this article, the authors address the following question: "What evidence is there to support the proposition that the global supply of conventional oil will be constrained by physical depletion before 2030?" The report is based upon a thorough review of the current state of knowledge on oil depletion.
Abstract: This Research Report addresses the following question: 'What evidence is there to support the proposition that the global supply of ‘conventional oil’ will be constrained by physical depletion before 2030?' The report is based upon a thorough review of the current state of knowledge on oil depletion, supplemented by data analysis and guided by an Expert Group

180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare and evaluate fourteen contemporary forecasts of global supply of conventional oil and provide some observations on their relative plausibility, and examine the impact of rates of discovery, reserves growth and depletion on the forecast date of peak and show how forecasts that delay this peak until beyond 2030 rest on assumptions that are at best optimistic and at worst implausible.

117 citations

Journal ArticleDOI
01 Jan 2012-Energy
TL;DR: The authors summarized and evaluated the evidence regarding four issues that are considered to be of critical importance for future global oil supply, including how regional and global oil resources are distributed between different sizes of field, why estimates of the recoverable resources from individual fields tend to grow over time and the current and likely future contribution of this to global reserve additions, how rapidly the production from different categories of field is declining and how this may be expected to change in the future; and how the remaining recoverable resource in a field or region can be produced.

108 citations

Journal ArticleDOI
TL;DR: The IEA was established in 1974 with a mandate to promote energy security amongst its members, namely the states of the OECD, and to advise those members on sound energy policy as discussed by the authors.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenization reaction.
Abstract: As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article. Bio-oil production can be facilitated through flash pyrolysis, which has been identified as one of the most feasible routes. The bio-oil has a high oxygen content and therefore low stability over time and a low heating value. Upgrading is desirable to remove the oxygen and in this way make it resemble crude oil. Two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking. HDO is a high pressure operation where hydrogen is used to exclude oxygen from the bio-oil, giving a high grade oil product equivalent to crude oil. Catalysts for the reaction are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200 h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenation reaction. In these systems hydrogen is not a requirement, so operation is performed at atmospheric pressure. However, extensive carbon deposition results in very short catalyst lifetimes. Furthermore a general restriction in the hydrogen content of the bio-oil results in a low H/C ratio of the oil product as no additional hydrogen is supplied. Overall, oil from zeolite cracking is of a low grade, with heating values approximately 25% lower than that of crude oil. Of the two mentioned routes, HDO appears to have the best potential, as zeolite cracking cannot produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms, understanding of the kinetics, elucidation of sulphur as a source of deactivation, evaluation of the requirement for high pressure, and sustainable sources for hydrogen are all areas which have to be elucidated before commercialisation of the process.

1,487 citations

Journal ArticleDOI
TL;DR: In this article, the Anthropocene epoch has been formally recognized as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch.
Abstract: The human imprint on the global environment has now become so large and active that it rivals some of the great forces of Nature in its impact on the functioning of the Earth system. Although global-scale human influence on the environment has been recognized since the 1800s, the term Anthropocene, introduced about a decade ago, has only recently become widely, but informally, used in the global change research community. However, the term has yet to be accepted formally as a new geological epoch or era in Earth history. In this paper, we put forward the case for formally recognizing the Anthropocene as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch. We then explore recent trends in the evolution of the Anthropocene as humanity proceeds into the twenty-first century, focusing on the profound changes to our relationship with the rest of the living world and on early attempts and proposals for managing our relationship with the large geophysical cycles that drive the Earth's climate system.

1,484 citations

Journal ArticleDOI
25 Oct 2011
TL;DR: The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that the authors know for sure can support contemporary society.
Abstract: Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.

1,222 citations

Journal ArticleDOI
TL;DR: This article reviewed the connection between these two issues and concluded that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate, however, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO2 concentrations caused by fossil fuel limitations.

1,121 citations

Book
05 Nov 2011
TL;DR: Carbon Democracy as discussed by the authors argues that no nation escapes the political consequences of our collective dependence on oil, and argues that the oil-based forms of modern democratic politics have become unsustainable, while governments everywhere appear incapable of addressing the crises that threaten to end the age of carbon democracy.
Abstract: Oil is a curse, it is often said, that condemns the countries producing it to an existence defined by war, corruption and enormous inequality. Carbon Democracy tells a more complex story, arguing that no nation escapes the political consequences of our collective dependence on oil. It shapes the body politic both in regions such as the Middle East, which rely upon revenues from oil production, and in the places that have the greatest demand for energy. Timothy Mitchell begins with the history of coal power to tell a radical new story about the rise of democracy. Coal was a source of energy so open to disruption that oligarchies in the West became vulnerable for the first time to mass demands for democracy. In the mid-twentieth century, however, the development of cheap and abundant energy from oil, most notably from the Middle East, offered a means to reduce this vulnerability to democratic pressures. The abundance of oil made it possible for the first time in history to reorganize political life around the management of something now called "the economy" and the promise of its infinite growth. The politics of the West became dependent on an undemocratic Middle East.In the twenty-first century, the oil-based forms of modern democratic politics have become unsustainable. Foreign intervention and military rule are faltering in the Middle East, while governments everywhere appear incapable of addressing the crises that threaten to end the age of carbon democracy - the disappearance of cheap energy and the carbon-fuelled collapse of the ecological order. In making the production of energy the central force shaping the democratic age, Carbon Democracy rethinks the history of energy, the politics of nature, the theory of democracy, and the place of the Middle East in our common world.

1,028 citations