scispace - formally typeset
Search or ask a question
Author

Richard N. Green

Bio: Richard N. Green is an academic researcher from Langley Research Center. The author has contributed to research in topics: Radiometer & Clouds and the Earth's Radiant Energy System. The author has an hindex of 13, co-authored 30 publications receiving 909 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: These algorithms are a prototype for the system that will produce the scientific data required for studying the role of clouds and radiation in the Earth's climate system, and are fundamental to the ability to understand, detect, and predict global climate change.
Abstract: The Clouds and the Earth's Radiant Energy System (CERES) is part of NASA's Earth Observing System (EOS), CERES objectives include the following. (1) For climate change analysis, provide a continuation of the Earth Radiation Budget Experiment (ERBE) record of radiative fluxes at the top-of-the-atmosphere (TOA), analyzed using the same techniques as the existing ERBE data. (2) Double the accuracy of estimates of radiative fluxes at TOA and the Earth's surface. (3) Provide the first long-term global estimates of the radiative fluxes within the Earth's atmosphere. (4) Provide cloud property estimates collocated in space and time that are consistent with the radiative fluxes from surface to TOA. In order to accomplish these goals, CERES uses data from a combination of spaceborne instruments: CERES scanners, which are an improved version of the ERBE broadband radiometers, and collocated cloud spectral imager data on the same spacecraft. The CERES cloud and radiative flux data products should prove extremely useful in advancing the understanding of cloud-radiation interactions, particularly cloud feedback effects on the Earth's radiation balance. For this reason, the CERES data should be fundamental to the ability to understand, detect, and predict global climate change. CERES results should also be very useful for studying regional climate changes associated with deforestation, desertification, anthropogenic aerosols, and ENSO events. This overview summarizes the Release 3 version of the planned CERES data products and data analysis algorithms. These algorithms are a prototype for the system that will produce the scientific data required for studying the role of clouds and radiation in the Earth's climate system.

283 citations

Journal ArticleDOI
TL;DR: In this article, a new method for determining unfiltered shortwave (SW), longwave (LW) and window (W) radiances from filtered radiances measured by the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument is presented.
Abstract: A new method for determining unfiltered shortwave (SW), longwave (LW) and window (W) radiances from filtered radiances measured by the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument is presented. The method uses theoretically derived regression coefficients between filtered and unfiltered radiances that are a function of viewing geometry, geotype and whether or not cloud is present. Relative errors in insta.ntaneous unfiltered radiances from this method are generally well below 1% for SW radiances (approx. 0.4% 1(sigma) or approx.l W/sq m equivalent flux), < 0.2% for LW radiances (approx. 0.1% 1(sigma) or approx.0.3 W/sq m equivalent flux) and < 0.2% (approx. 0.1% 1(sigma) for window channel radiances.

143 citations

Journal ArticleDOI
TL;DR: The Earth Radiation Budget Experiment (ERBE) as discussed by the authors carries a three-channel scanning radiometer and a set of nadir-looking wide and medium field-of-view instruments for measuring the radiation emitted from earth and the solar radiation reflected from earth.
Abstract: The Earth Radiation Budget Experiment carries a three-channel scanning radiometer and a set of nadir-looking wide and medium field-of-view instruments for measuring the radiation emitted from earth and the solar radiation reflected from earth. This paper describes the algorithms which are used to compute the radiant exitances at a reference level ('top of the atmosphere') from these measurements. Methods used to analyze data from previous radiation budget experiments are reviewed, and the rationale for the present algorithms is developed. The scanner data are converted to radiances by use of spectral factors, which account for imperfect spectral response of the optics. These radiances are converted to radiant exitances at the reference level by use of directional models, which account for anisotropy of the radiation as it leaves the earth. The spectral factors and directional models are selected on the basis of the scene, which is identified on the basis of the location and the long-wave and shortwave radiances. These individual results are averaged over 2.5 x 2.5 deg regions. Data from the wide and medium field-of-view instruments are analyzed by use of the traditional shape factor method and also by use of a numerical filter, which permits resolution enhancement along the orbit track.

143 citations

Journal ArticleDOI
TL;DR: In this article, a maximum likelihood estimation (MLE) technique was used for cloud identification using coarse-resolution broadband satellite data using simulated satellite observations, and the results suggest that the MLE method is an improvement over a Lambertian earth assumption and the clear/cloud threshold used in the inversion of Nimbus 3 and Nimbus 7 data.
Abstract: A maximum likelihood estimation (MLE) technique to the problem of cloud identification using coarse resolution broadband satellite data is developed and tested using simulated satellite observations. The results suggest that, in the determination of cloud conditions for the inversion of satellite-measured radiances to fluxes, the MLE method is an improvement over a Lambertian earth assumption and the clear/cloud threshold used in the inversion of Nimbus 3 and Nimbus 7 data. The use of the MLE method in the operational processing of Earth Radiation Budget Experiment scanner data is considered.

143 citations

Journal ArticleDOI
TL;DR: The current effort describes the radiometric performance of the CERES Proto-Flight Model on the Tropical Rainfall Measuring Mission spacecraft over t... as discussed by the authors, which has achieved a long-term repeatability of better than 0.2% for the first 18 months of science data collection.
Abstract: Each Clouds and the Earth’s Radiant Energy System (CERES) instrument contains three scanning thermistor bolometer radiometric channels. These channels measure broadband radiances in the shortwave (0.3–5.0 μm), total (0.3–>100 μm), and water vapor window regions (8–12 μm). Ground-based radiometric calibrations of the CERES flight models were conducted by TRW Inc.’s Space and Electronics Group of Redondo Beach, California. On-orbit calibration and vicarious validation studies have demonstrated radiometric stability, defined as long-term repeatability when measuring a constant source, at better than 0.2% for the first 18 months of science data collection. This level exceeds by 2.5 to 5 times the prelaunch radiometric performance goals that were set at the 0.5% level for terrestrial energy flows and 1.0% for solar energy flows by the CERES Science Team. The current effort describes the radiometric performance of the CERES Proto-Flight Model on the Tropical Rainfall Measuring Mission spacecraft over t...

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The proposed MODIS standard products for land applications are described along with the current plans for data quality assessment and product validation.
Abstract: The first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is planned for launch by NASA in 1998. This instrument will provide a new and improved capability for terrestrial satellite remote sensing aimed at meeting the needs of global change research. The MODIS standard products will provide new and improved tools for moderate resolution land surface monitoring. These higher order data products have been designed to remove the burden of certain common types of data processing from the user community and meet the more general needs of global-to-regional monitoring, modeling, and assessment. The near-daily coverage of moderate resolution data from MODIS, coupled with the planned increase in high-resolution sampling from Landsat 7, will provide a powerful combination of observations. The full potential of MODIS will be realized once a stable and well-calibrated time-series of multispectral data has been established. In this paper the proposed MODIS standard products for land applications are described along with the current plans for data quality assessment and product validation.

1,415 citations

Journal ArticleDOI
TL;DR: In this paper, the authors applied an approach that decouples surface reflectance spectra from the real-time radiative transfer simulations to calculate the total shortwave albedo, total-, direct-, and diffuse-visible, and near-infrared broadband albedos for several narrowband sensors.

940 citations

Journal ArticleDOI
TL;DR: The algorithm presented may be employed to derive albedo from space-based multiangular measurements and also serves as a guide for the use of the MODIS BRDF/albedo product.
Abstract: Spectral albedo may be derived from atmospherically corrected, cloud-cleared multiangular reflectance observations through the inversion of a bidirectional reflectance distribution function (BRDF) model and angular integration. This paper outlines an algorithm suitable for this task that makes use of kernel-based BRDF models. Intrinsic land surface albedos are derived, which may be used to derive actual albedo by taking into account the prevailing distribution of diffuse skylight. Spectral-to-broadband conversion is achieved using band-dependent weighting factors. The validation of a suitable BRDF model, the semiempirical Ross-Li (reciprocal RossThick-LiSparse) model and its performance under conditions of sparse angular sampling and noisy reflectances are discussed, showing that the retrievals obtained are generally reliable. The solar-zenith angle dependence of albedo may be parameterized by a simple polynomial that makes it unnecessary for the user to be familiar with the underlying BRDF model. The algorithm given is that used for the production of a BRDF/albedo standard data product from NASA's EOS-MODIS sensor, for which an at-launch status is provided. Finally, the algorithm is demonstrated on combined AVHRR and GOES observations acquired over New England, from which solar zenith angle-dependent albedo maps with a nominal spatial resolution of 1 km are derived in the visible band. The algorithm presented may be employed to derive albedo from space-based multiangular measurements and also serves as a guide for the use of the MODIS BRDF/albedo product.

930 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided a detailed error analysis of TOA fluxes based on the latest generation of Clouds and the Earth's Radiant Energy System (CERES) gridded monthly mean data products [the monthly TOA/surface averages geostationary (SRBAVG-GEO)] and used an objective constrainment algorithm to adjust reflected solar (SW) and emitted thermal (LW) top-of-atmosphere (TOA) radiative fluxes within their range of uncertainty.
Abstract: Despite recent improvements in satellite instrument calibration and the algorithms used to determine reflected solar (SW) and emitted thermal (LW) top-of-atmosphere (TOA) radiative fluxes, a sizeable imbalance persists in the average global net radiation at the TOA from satellite observations. This imbalance is problematic in applications that use earth radiation budget (ERB) data for climate model evaluation, estimate the earth’s annual global mean energy budget, and in studies that infer meridional heat transports. This study provides a detailed error analysis of TOA fluxes based on the latest generation of Clouds and the Earth’s Radiant Energy System (CERES) gridded monthly mean data products [the monthly TOA/surface averages geostationary (SRBAVG-GEO)] and uses an objective constrainment algorithm to adjust SW and LW TOA fluxes within their range of uncertainty to remove the inconsistency between average global net TOA flux and heat storage in the earth–atmosphere system. The 5-yr global mean...

858 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of clouds on the earth's radiation balance is assessed in terms of longwave, shortwave, and net cloud forcing by using monthly averaged clear-sky and cloudy-sky flux data derived from the NASA Earth Radiation Budget Experiment (ERBE).
Abstract: The impact of clouds on the earth's radiation balance is assessed in terms of longwave, shortwave, and net cloud forcing by using monthly averaged clear-sky and cloudy-sky flux data derived from the NASA Earth Radiation Budget Experiment (ERBE). Emphasis is placed on regional measurements, regional cloud forcing, zonal cloud forcing, and snow and ice contributions. It is shown that the global mean cooling varied from 14 to 21 W/sq m between April 1985 and January 1986; hemispherically, the longwave and shortwave cloud forcing nearly cancel each other in the winter hemisphere, while in the summer the negative shortwave cloud forcing is significantly lower than the longwave cloud forcing, producing a strong cooling. The ERBE data reveal that globally, hemispherically, and zonally, clouds have a significant effect on the radiative heating gradients.

634 citations