Author

# Richard P. Lippmann

Bio: Richard P. Lippmann is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topic(s): Artificial neural network & Intrusion detection system. The author has an hindex of 43, co-authored 92 publication(s) receiving 21619 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification and exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components.

Abstract: Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes are connected via weights that are typically adapted during use to improve performance. There has been a recent resurgence in the field of artificial neural nets caused by new net topologies and algorithms, analog VLSI implementation techniques, and the belief that massive parallelism is essential for high performance speech and image recognition. This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification. These nets are highly parallel building blocks that illustrate neural net components and design principles and can be used to construct more complex systems. In addition to describing these nets, a major emphasis is placed on exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components. Single-layer nets can implement algorithms required by Gaussian maximum-likelihood classifiers and optimum minimum-error classifiers for binary patterns corrupted by noise. More generally, the decision regions required by any classification algorithm can be generated in a straightforward manner by three-layer feed-forward nets.

7,595 citations

••

[...]

TL;DR: This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification and exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components.

Abstract: Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes are connected via weights that are typically adapted during use to improve performance. There has been a recent resurgence in the field of artificial neural nets caused by new net topologies and algorithms, analog VLSI implementation techniques, and the belief that massive parallelism is essential for high performance speech and image recognition. This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification. These nets are highly parallel building blocks that illustrate neural net components and design principles and can be used to construct more complex systems. In addition to describing these nets, a major emphasis is placed on exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components. Single-layer nets can implement algorithms required by Gaussian maximum-likelihood classifiers and optimum minimum-error classifiers for binary patterns corrupted by noise. More generally, the decision regions required by any classification algorithm can be generated in a straightforward manner by three-layer feed-forward nets.

3,164 citations

••

[...]

12 May 2002

TL;DR: This paper presents an automated technique for generating and analyzing attack graphs, based on symbolic model checking algorithms, letting us construct attack graphs automatically and efficiently.

Abstract: An integral part of modeling the global view of network security is constructing attack graphs. Manual attack graph construction is tedious, error-prone, and impractical for attack graphs larger than a hundred nodes. In this paper we present an automated technique for generating and analyzing attack graphs. We base our technique on symbolic model checking algorithms, letting us construct attack graphs automatically and efficiently. We also describe two analyses to help decide which attacks would be most cost-effective to guard against. We implemented our technique in a tool suite and tested it on a small network example, which includes models of a firewall and an intrusion detection system.

1,241 citations

••

[...]

TL;DR: Results of Monte Carlo simulations performed using multilayer perceptron (MLP) networks trained with backpropagation, radial basis function (RBF) networks, and high-order polynomial networks graphically demonstrate that network outputs provide good estimates of Bayesian probabilities.

Abstract: Many neural network classifiers provide outputs which estimate Bayesian a posteriori probabilities. When the estimation is accurate, network outputs can be treated as probabilities and sum to one. Simple proofs show that Bayesian probabilities are estimated when desired network outputs are 1 of M (one output unity, all others zero) and a squared-error or cross-entropy cost function is used. Results of Monte Carlo simulations performed using multilayer perceptron (MLP) networks trained with backpropagation, radial basis function (RBF) networks, and high-order polynomial networks graphically demonstrate that network outputs provide good estimates of Bayesian probabilities. Estimation accuracy depends on network complexity, the amount of training data, and the degree to which training data reflect true likelihood distributions and a priori class probabilities. Interpretation of network outputs as Bayesian probabilities allows outputs from multiple networks to be combined for higher level decision making, sim...

1,098 citations

••

[...]

TL;DR: This report describes new and known approaches and strategies that were used to make attacks stealthy for the 1999 DARPA Intrusion Detection Evaluation, and includes many examples of stealthy scripts that can be use to implement stealthy procedures.

Abstract: Eight sites participated in the second Defense Advanced Research Projects Agency (DARPA) off-line intrusion detection evaluation in 1999. A test bed generated live background traffic similar to that on a government site containing hundreds of users on thousands of hosts. More than 200 instances of 58 attack types were launched against victim UNIX and Windows NT hosts in three weeks of training data and two weeks of test data. False-alarm rates were low (less than 10 per day). The best detection was provided by network-based systems for old probe and old denial-of-service (DoS) attacks and by host-based systems for Solaris user-to-root (U2R) attacks. The best overall performance would have been provided by a combined system that used both host- and network-based intrusion detection. Detection accuracy was poor for previously unseen, new, stealthy and Windows NT attacks. Ten of the 58 attack types were completely missed by all systems. Systems missed attacks because signatures for old attacks did not generalize to new attacks, auditing was not available on all hosts, and protocols and TCP services were not analyzed at all or to the depth required. Promising capabilities were demonstrated by host-based systems, anomaly detection systems and a system that performs forensic analysis on file system data.

867 citations

##### Cited by

More filters

••

[...]

Bell Labs

^{1}TL;DR: In this paper, the authors provide an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and give practical details on methods of implementation of the theory along with a description of selected applications of HMMs to distinct problems in speech recognition.

Abstract: This tutorial provides an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and gives practical details on methods of implementation of the theory along with a description of selected applications of the theory to distinct problems in speech recognition. Results from a number of original sources are combined to provide a single source of acquiring the background required to pursue further this area of research. The author first reviews the theory of discrete Markov chains and shows how the concept of hidden states, where the observation is a probabilistic function of the state, can be used effectively. The theory is illustrated with two simple examples, namely coin-tossing, and the classic balls-in-urns system. Three fundamental problems of HMMs are noted and several practical techniques for solving these problems are given. The various types of HMMs that have been studied, including ergodic as well as left-right models, are described. >

20,894 citations

•

[...]

Aston University

^{1}TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.

Abstract: From the Publisher:
This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

19,046 citations

••

[...]

TL;DR: The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue.

Abstract: Publisher Summary This chapter provides an account of different neural network architectures for pattern recognition. A neural network consists of several simple processing elements called neurons. Each neuron is connected to some other neurons and possibly to the input nodes. Neural networks provide a simple computing paradigm to perform complex recognition tasks in real time. The chapter categorizes neural networks into three types: single-layer networks, multilayer feedforward networks, and feedback networks. It discusses the gradient descent and the relaxation method as the two underlying mathematical themes for deriving learning algorithms. A lot of research activity is centered on learning algorithms because of their fundamental importance in neural networks. The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue. It closes with the discussion of performance and implementation issues.

12,585 citations

••

[...]

TL;DR: It is demonstrated that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube.

Abstract: In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

10,615 citations

••

[...]

TL;DR: It is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution.

Abstract: In the first part of this paper, a regular recurrent neural network (RNN) is extended to a bidirectional recurrent neural network (BRNN). The BRNN can be trained without the limitation of using input information just up to a preset future frame. This is accomplished by training it simultaneously in positive and negative time direction. Structure and training procedure of the proposed network are explained. In regression and classification experiments on artificial data, the proposed structure gives better results than other approaches. For real data, classification experiments for phonemes from the TIMIT database show the same tendency. In the second part of this paper, it is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution. For this part, experiments on real data are reported.

5,216 citations