scispace - formally typeset
Search or ask a question
Author

Richard P. Nordan

Bio: Richard P. Nordan is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Antibody & Ligand (biochemistry). The author has an hindex of 9, co-authored 13 publications receiving 1669 citations.

Papers
More filters
Journal ArticleDOI
04 May 1989-Nature
TL;DR: It is shown that cross-linkage of FcεRI on a series of non-transformed murine mast cell lines, or treatment of these cells with calcium ionophores, stimulates increased messenger RNA levels and secretion of a group of lymphokines classically produced by a subset of murine T cell lines (TH2cells).
Abstract: The cross-linkage of high affinity Fc epsilon receptors (Fc epsilon RI) on mast cells and basophils is central to the induction of allergic inflammatory responses. As a result of such cross-linkage, mast cells secrete a variety of preformed biologically active substances, such as histamine, and newly synthesized arachidonic acid metabolites. Here we show that cross-linkage of Fc epsilon RI on a series of nontransformed murine mast cell lines, or treatment of these cells with calcium ionophores, stimulates increased messenger RNA levels and secretion of a group of lymphokines classically produced by a subset of murine T cell lines (TH2 cells). These factors include interleukin-3 (a mast cell growth factor)s interleukin-4 (an IgE 'switch factor'), interleukin-5 (an eosinophil differentiation factor) and interleukin-6 (a factor controlling immunoglobulin secretion). The production of these polypeptide factors by mast cells may have great importance in the induction of allergic and anti-parasite inflammatory responses.

1,155 citations

Journal ArticleDOI
01 Feb 1991-Blood
TL;DR: It is found that a neutralizing anti-IL-6 monoclonal antibody can inhibit U266 proliferation and the addition of IL-6 antisense oligonucleotides also inhibits U266iferation, suggesting the presence of an autocrine loop.

174 citations

Journal ArticleDOI
TL;DR: Using T cell‐derived interleukin‐HP1 (HP1), purified to homogeneity, as the prototype of this family of cytokines, the effects of these molecules in conventional polyclonal B cell activation assays with anti‐immunoglobulin antibodies or dextran sulfate as co‐stimulators are examined.
Abstract: It was recently shown that T cells, macrophages and fibroblasts produce growth factors for B cell hybridomas and plasmacytomas. These factors were subsequently identified as members of a new family of cytokines on the basis of NH2-terminal amino acid sequence analyses. Using T cell-derived interleukin-HP1 (HP1), purified to homogeneity, as the prototype of this family, we examined the effects of these molecules in conventional polyclonal B cell activation assays with anti-immunoglobulin antibodies or dextran sulfate as co-stimulators. In the absence of other cytokines, the only significant effect of HP1 was to stimulate moderately the proliferation of anti-immunoglobulin-activated B cells. By contrast, in conjunction with interleukin 1, HP1 became a major growth and differentiation factor not only for B cells activated with anti-immunoglobulin antibodies but also for dextran sulfate-stimulated and even for unstimulated B cells. In fact, with respect to cell proliferation or IgM synthesis, the IL1-HP1 combination proved to be equivalent to B cell stimulatory factors like IL4 or IL5. This B cell stimulatory activity was not due to the presence of a contaminant in the HP1 preparation because it was also observed with purified plasmacytoma growth factors derived from macrophages and fibroblasts, and could be inhibited by a monoclonal anti-HP1 antibody.

119 citations

Journal Article
TL;DR: Functional studies performed in U-937 cells showed that this cell line is not only partially resistant to the antiproliferative and antiviral effects of IFN-alpha, but also fails to down-regulate the alpha-subunit of the IFn-alpha receptor upon IFN -alpha binding.
Abstract: The structure of IFN-alpha receptor was studied by 1) developing antibodies against the receptor, and 2) screening a number of cell lines by affinity cross-linking to identify cells that express different IFN-alpha 2 receptor structures. We report that two different patterns of IFN-alpha 2 receptor are observed in human cells of hematopoietic origin. The predominant form of the IFN-alpha receptor is a multichain structure in which IFN-alpha 2 forms complexes of 110 and 130 kDa (alpha-subunit). A high Mr complex of 210 kDa results from the association of alpha-subunit and other receptor components. In contrast, another form of the receptor has been identified in the IFN-alpha-resistant U-937 cell line and in some cases of acute leukemia. This form of the IFN-alpha receptor is characterized by the presence of the alpha- subunit, and the absence of the 110- and 210-kDa bands. Also a novel 180-kDa complex and a more prominent 75-kDa band are observed. Functional studies performed in U-937 cells showed that this cell line is not only partially resistant to the antiproliferative and antiviral effects of IFN-alpha, but also fails to down-regulate the alpha-subunit of the IFN-alpha receptor upon IFN-alpha binding.

73 citations

Journal Article
TL;DR: Results provide the first instance of differential lymphokine requirements among primary vs secondary B cell responses, and suggest T cell-derived IL-6 plays a critical role during the regulation of humoral immune responses.
Abstract: IL-6 (formerly PCTGF, HP-1, BSF-2, HGF, IFN-beta 2, 26 kDa) is a recently defined lymphokine demonstrating activity on multiple cell types, including hepatocytes, thymocytes, T cells, plasmacytomas, and B cells. The biologic effects of IL-6 on lymphocytes, particularly B cells, suggest this factor may be involved in the regulation of normal immune responses. Accordingly, we have investigated the role of IL-6 in Ag-specific responses of B cells from both naive and Ag-primed mice. When Ag-primed splenic T cells were used as a source of help, naive (primary) B cell responses specific for the hemagglutinin molecule of the influenza A virus (PR8) were fully inhibited by the addition of an anti-IL-6 antiserum, and are thus IL-6 dependent. In contrast, secondary B cell responses were essentially IL-6 independent, being unaffected by this antiserum even at concentrations 10-fold higher than required to completely inhibit primary responses. This differential IL-6 requirement was further investigated by using a panel of hemagglutinin molecule-specific Th clones. Consistent with the above findings, a Th1 clone secreting biologically active IL-6 enables antibody secretion by both primary and secondary B cells, whereas Th1 clones that do not produce IL-6 support secondary responses, but fail to help primary B cell responses unless exogenous IL-6 is added. These results provide the first instance of differential lymphokine requirements among primary vs secondary B cell responses, and suggest T cell-derived IL-6 plays a critical role during the regulation of humoral immune responses. Moreover, functionally distinct Th1 clones were identified that differed in IL-6 secretion and their corresponding ability to induce Ig secretion by primary and secondary B cells.

73 citations


Cited by
More filters
Journal ArticleDOI
03 Jun 1994-Science
TL;DR: A previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that phosphorylate substrate proteins called STATs (signal transducers and activators of transcription).
Abstract: Through the study of transcriptional activation in response to interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma), a previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that then phosphorylate substrate proteins called STATs (signal transducers and activators of transcription). The phosphorylated STAT proteins move to the nucleus, bind specific DNA elements, and direct transcription. Recognition of the molecules involved in the IFN-alpha and IFN-gamma pathway has led to discoveries that a number of STAT family members exist and that other polypeptide ligands also use the Jak-STAT molecules in signal transduction.

5,746 citations

Journal ArticleDOI
TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Abstract: Background. In atopic asthma, activated T helper lymphocytes are present in bronchial-biopsy specimens and bronchoalveolar-lavage (BAL) fluid, and their production of cytokines may be important in the pathogenesis of this disorder. Different patterns of cytokine release are characteristic of certain subgroups of T helper cells, termed TH1 and TH2, the former mediating delayed-type hypersensitivity and the latter mediating IgE synthesis and eosinophilia. The pattern of cytokine production in atopic asthma is unknown. Methods. We assessed cells obtained by BAL in subjects with mild atopic asthma and in normal control subjects for the expression of messenger RNA (mRNA) for interleukin-2, 3, 4, and 5, granulocytemacrophage colony-stimulating factor (GM-CSF), and interferon gamma by in situ hybridization with 32P-labeled complementary RNA. Localization of mRNA to BAL T cells was assessed by simultaneous in situ hybridization and immunofluorescence and by in situ hybridization after immunomagnetic enrichment or...

2,898 citations

Journal ArticleDOI
TL;DR: Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1,IL-2, IL-3, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40, and the potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.
Abstract: A cytokine synthesis inhibitory factor (CSIF) is secreted by Th2 clones in response to Con A or antigen stimulation, but is absent in supernatants from Con A-induced Th1 clones. CSIF can inhibit the production of IL-2, IL-3, lymphotoxin (LT)/TNF, IFN-gamma, and granulocyte-macrophage CSF (GM-CSF) by Th1 cells responding to antigen and APC, but Th2 cytokine synthesis is not significantly affected. Transforming growth factor beta (TGF-beta) also inhibits IFN-gamma production, although less effectively than CSIF, whereas IL-2 and IL-4 partially antagonize the activity of CSIF. CSIF inhibition of cytokine synthesis is not complete, since early cytokine synthesis (before 8 h) is not significantly affected, whereas later synthesis is strongly inhibited. In the presence of CSIF, IFN-gamma mRNA levels are reduced slightly at 8, and strongly at 12 h after stimulation. Inhibition of cytokine expression by CSIF is not due to a general reduction in Th1 cell viability, since actin mRNA levels were not reduced, and proliferation of antigen-stimulated cells in response to IL-2, was unaffected. Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40. The potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.

2,847 citations

Journal ArticleDOI

1,873 citations

Journal ArticleDOI
01 Jan 1999-Immunity
TL;DR: Findings provide evidence that constitutively activated Stat3 signaling contributes to the pathogenesis of multiple myeloma by preventing apoptosis.

1,682 citations