scispace - formally typeset
Search or ask a question
Author

Richard Q. Williams

Other affiliations: Microsoft
Bio: Richard Q. Williams is an academic researcher from IBM. The author has contributed to research in topics: Transistor & Layer (electronics). The author has an hindex of 22, co-authored 65 publications receiving 1859 citations. Previous affiliations of Richard Q. Williams include Microsoft.


Papers
More filters
Patent
Rajiv V. Joshi1, Richard Q. Williams1
19 Jul 2004
TL;DR: In this paper, a channel core (16) of a FinFET (10) has a channel envelope (32), each made from a semiconductor material defining a different lattice structure to exploit strained silicon properties.
Abstract: A channel (16) of a FinFET (10) has a channel core (24) and a channel envelope (32), each made from a semiconductor material defining a different lattice structure to exploit strained silicon properties. A gate is coupled to the channel envelope through a gate dielectric. Exemplary materials are Si and SixGe1-x, wherein 78

239 citations

Patent
26 Jun 1998
TL;DR: In this article, a method using a generate-and-verify computer program product to generate by repetitive passes a design rules checking computer program, wherein the design rules are described in a file called a runset.
Abstract: A method using a generate-and-verify computer program product to generate by repetitive passes a design rules checking computer program, wherein the design rules are described in a file called a runset. The design rules checking program is used for exhaustive testing of VLSI chips for compliance to the design rules of a given VLSI fabrication process. The runset is repeatedly iterated in loop fashion with respect to a testcase file containing groups of layout structures or shapes used for verifying the correctness of the runset. A general purpose shapes processing program creates an error shapes file for storing geometrical errors found in each said layout structure. Two additional shapes are used in the verification process: user boundary shapes for defining areas in which errors are not to be detected for a given design rule, and automated boundary shapes created to surround each said layout structure with a boundary that defines regions where error shapes can occur. An association table is created which is a compilation of the error shapes, user boundary shapes, and automated boundary shapes associated with each layout structure. The association table is processed to determine the correctness of the runset. The runset is modified to correct each valid error. The repetitive passes continue until a final runset is generated. This final runset becomes the input to design rules checking computer program product and customizes the program for a given VLSI fabrication process.

224 citations

Proceedings ArticleDOI
01 Dec 2007
TL;DR: In this article, the authors report record RF performance in 45-nm silicon-on-insulator (SOI) CMOS technology and demonstrate that RF performance scaling with channel length and layout optimization is demonstrated.
Abstract: We report record RF performance in 45-nm silicon-on- insulator (SOI) CMOS technology. RF performance scaling with channel length and layout optimization is demonstrated. Peak fT's of 485 GHz and 345 GHz are measured in floating- body NFET and PFET with nearby wiring parasitics (i.e., gate- to-contact capacitance) included after de-embedding, thus representing FET performance in a real design. The measured fT's are the highest ever reported in a CMOS technology. Body- contacted FETs are also analyzed that have layout optimized for high-frequency analog applications. Employing a notched body contact layout, we reduce parasitic capacitance and gate leakage current significantly, thus improving RF performance with low power. For longer than minimum channel length and a body-contacted NFET with notched layout, we measure a peak fT of 245 GHz with no degradation in critical analog figures of merit, such as self-gain.

191 citations

Patent
04 Jan 1999
TL;DR: In this paper, a method for fabricating a connector structure for interconnecting integrated circuit chips is described, which includes the steps of patterning, masking and etching a substrate to form protrusions on the top and/or bottom surfaces of the substrate.
Abstract: A method for fabricating a connector structure for interconnecting integrated circuit chips. The method includes the steps of patterning, masking and etching a substrate to form protrusions on the top and/or bottom surfaces of the substrate. Then the protrusions are preferentially etched to form truncated protrusions. An integrated circuit chip having pads on its surface is then joined to the top and/or bottom sides of the substrate. The protrusions and pads are coated with an electrically conductive metal. The substrate and the integrated circuit chips are joined and aligned together such that the truncated protrusions mate with the pads. Metal-coated vias are formed through the substrate to electrically connect the integrated circuit chips on the surfaces of the substrate.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the challenges and results of compact modeling at the 65-nm node and beyond, as well as the modeling of intradie and interdie variations, updated for small geometries.
Abstract: The scaling of semiconductor technologies from 90- to 45-nm nodes highlights the need for accurate and predictive compact models that address the regime where small-scale physical effects become dominant. These demanding requirements on compact models extend beyond the core model to a suite of design tools that include extraction tools and statistical methods to account for unpredictable variation (e.g., random dopant fluctuations and polysilicon linewidth variation) and predictable variation (e.g., transistor response differences that are layout dependent). Layout-dependent or local environment differences are driven by factors such as lithography and novel performance-enhancing process techniques such as dual-stress nitride liner films. Sources of variation such as rapid thermal annealing temperature, low-frequency noise, and modeling of back-end-of-line elements need to be considered. The modeling of intradie and interdie variations, updated for small geometries, should be properly positioned in the design flow. This paper presents the challenges and results of compact modeling at the 65-nm node and beyond

82 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
Abstract: An electronic–photonic microprocessor chip manufactured using a conventional microelectronics foundry process is demonstrated; the chip contains 70 million transistors and 850 photonic components and directly uses light to communicate to other chips. The rapid transfer of data between chips in computer systems and data centres has become one of the bottlenecks in modern information processing. One way of increasing speeds is to use optical connections rather than electrical wires and the past decade has seen significant efforts to develop silicon-based nanophotonic approaches to integrate such links within silicon chips, but incompatibility between the manufacturing processes used in electronics and photonics has proved a hindrance. Now Chen Sun et al. describe a 'system on a chip' microprocessor that successfully integrates electronics and photonics yet is produced using standard microelectronic chip fabrication techniques. The resulting microprocessor combines 70 million transistors and 850 photonic components and can communicate optically with the outside world. This result promises a way forward for new fast, low-power computing systems architectures. Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome1,2,3 by using optical communications based on chip-scale electronic–photonic systems4,5,6,7 enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic–photonic chips9,10,11 are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics12, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors13,14,15,16. This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

1,058 citations

Journal ArticleDOI
Kinam Kim1, Jae-Young Choi1, Taek Kim1, Seong-Ho Cho1, Hyun-Jong Chung1 
17 Nov 2011-Nature
TL;DR: Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap, but it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.
Abstract: As silicon-based electronics approach the limit of improvements to performance and capacity through dimensional scaling, attention in the semiconductor field has turned to graphene, a single layer of carbon atoms arranged in a honeycomb lattice. Its high mobility of charge carriers (electrons and holes) could lead to its use in the next generation of high-performance devices. Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap. But it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.

707 citations

Patent
22 Aug 2003
TL;DR: In this paper, a gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the SINR, which is a semiconductor device consisting of a top surface and laterally-opposite sidewalls formed on a substrate.
Abstract: The present invention is a semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body.

559 citations

Journal ArticleDOI
24 May 2013
TL;DR: The properties of graphene relevant for electronic applications are discussed, its advantages and problems are examined, and the state of the art of graphene transistors are summarized.
Abstract: Graphene is a relatively new material with unique properties that holds promise for electronic applications. Since 2004, when the first graphene samples were intentionally fabricated, the worldwide research activities on graphene have literally exploded. Apart from physicists, also device engineers became interested in the new material and soon the prospects of graphene in electronics have been considered. For the most part, the early discussions on the potential of graphene had a prevailing positive mood, mainly based on the high carrier mobilities observed in this material. This has repeatedly led to very optimistic assessments of the potential of graphene transistors and to an underestimation of their problems. In this paper, we discuss the properties of graphene relevant for electronic applications, examine its advantages and problems, and summarize the state of the art of graphene transistors.

445 citations