scispace - formally typeset
Search or ask a question
Author

Richard Saurel

Bio: Richard Saurel is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Multiphase flow & Euler equations. The author has an hindex of 37, co-authored 119 publications receiving 5525 citations. Previous affiliations of Richard Saurel include Centre national de la recherche scientifique & University of Bordeaux.


Papers
More filters
Journal ArticleDOI
TL;DR: A new model and a solution method for two-phase compressible flows is proposed that provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.

906 citations

Journal ArticleDOI
TL;DR: A single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms is developed that fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them.

360 citations

Journal ArticleDOI
TL;DR: A simple second order accurate and fully Eulerian numerical method for the simulation of multifluid compressible flows, governed by the stiffened gas equation of state, in hydrodynamic regime, relies on a second order Godunov-type scheme, with approximate Riemann solver for the resolution of conservation equations, and a set of nonconservative equations.
Abstract: A simple second order accurate and fully Eulerian numerical method is presented for the simulation of multifluid compressible flows, governed by the stiffened gas equation of state, in hydrodynamic regime. Our numerical method relies on a second order Godunov-type scheme, with approximate Riemann solver for the resolution of conservation equations, and a set of nonconservative equations. It is valid for all mesh points and allows the resolution of interfaces. This method works for an arbitrary number of interfaces, for breakup and coalescence. It allows very high density ratios (up to 1000). It is able to compute very strong shock waves (pressure ratio up to 10 5). Contrary to all existing schemes (which consider the interface as a discontinuity) the method considers the interface as a numerical diffusion zone as contact discontinuities are computed in compressible single phase flows, but the variables describing the mixture zone are computed consistently with the density, momentum and energy. Several test problems are presented in one, two, and three dimensions. This method allows, for example, the computation of the interaction of a shock wave propagating in a liquid with a gas cylinder, as well as Richtmeyer--Meshkov instabilities, or hypervelocity impact, with realistic initial conditions. We illustrate our method with the Rusanov flux. However, the same principle can be applied to a more general class of schemes.

360 citations

Journal ArticleDOI
TL;DR: In this article, a hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling, which is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps.
Abstract: A hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling. The model is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps. These fronts correspond to extra waves in the system. The model involves two temperatures and entropies but a single pressure and a single velocity. The closure is achieved by two equations of state that reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium is achieved by temperature and chemical potential relaxation terms whose kinetics is considered infinitely fast at specific locations only, typically at evaporation fronts. Thus, metastable states are involved for locations far from these fronts. Computational results are compared to the experimental ones. Computed and measured front speeds are of the same order of magnitude and the same tendency of increasing front speed with initial temperature is reported. Moreover, the limit case of evaporation fronts propagating in highly metastable liquids with the Chapman-Jouguet speed is recovered as an expansion wave of the present model in the limit of stiff thermal and chemical relaxation.

300 citations

Journal ArticleDOI
TL;DR: The Godunov method is developed for the generalization of the formulation of a compressible multiphase unconditionally hyperbolic model to an arbitrary number of fluids, and to mass and energy transfers, and extended to the multidimensional case.
Abstract: A compressible multiphase unconditionally hyperbolic model is proposed. It is able to deal with a wide range of applications: interfaces between compressible materials, shock waves in condensed multiphase mixtures, homogeneous two-phase flows (bubbly and droplet flows) and cavitation in liquids. Here we focus on the generalization of the formulation to an arbitrary number of fluids, and to mass and energy transfers, and extend the associated Godunov method.We first detail the specific problems involved in the computation of thermodynamic interface variables when dealing with compressible materials separated by well-defined interfaces. We then address one of the major problems in the modelling of detonation waves in condensed energetic materials and propose a way to suppress the mixture equation of state. We then consider another problem of practical importance related to high-pressure liquid injection and associated cavitating flow. This problem involves the dynamic creation of interfaces. We show that the multiphase model is able to solve these very different problems using a unique formulation.We then develop the Godunov method for this model. We show how the non-conservative terms must be discretized in order to fulfil the interface conditions. Numerical resolution of interface conditions and partial equilibrium multiphase mixtures also requires the introduction of infinite relaxation terms. We propose a way to solve them in the context of an arbitrary number of fluids. This is of particular importance for the development of multimaterial reactive hydrocodes. We finally extend the discretization method in the multidimensional case, and show some results and validations of the model and method.

295 citations


Cited by
More filters
Book
01 Jan 2002
TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.
Abstract: Preface 1. Introduction 2. Conservation laws and differential equations 3. Characteristics and Riemann problems for linear hyperbolic equations 4. Finite-volume methods 5. Introduction to the CLAWPACK software 6. High resolution methods 7. Boundary conditions and ghost cells 8. Convergence, accuracy, and stability 9. Variable-coefficient linear equations 10. Other approaches to high resolution 11. Nonlinear scalar conservation laws 12. Finite-volume methods for nonlinear scalar conservation laws 13. Nonlinear systems of conservation laws 14. Gas dynamics and the Euler equations 15. Finite-volume methods for nonlinear systems 16. Some nonclassical hyperbolic problems 17. Source terms and balance laws 18. Multidimensional hyperbolic problems 19. Multidimensional numerical methods 20. Multidimensional scalar equations 21. Multidimensional systems 22. Elastic waves 23. Finite-volume methods on quadrilateral grids Bibliography Index.

5,791 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the formation of droplet clouds or sprays that subsequently burn in combustion chambers, which is caused by interfacial instabilities, such as the Kelvin-Helmholtz instability.
Abstract: The numerical simulation of flows with interfaces and free-surface flows is a vast topic, with applications to domains as varied as environment, geophysics, engineering, and fundamental physics. In engineering, as well as in other disciplines, the study of liquid-gas interfaces is important in combustion problems with liquid and gas reagents. The formation of droplet clouds or sprays that subsequently burn in combustion chambers originates in interfacial instabilities, such as the Kelvin-Helmholtz instability. What can numerical simulations do to improve our understanding of these phenomena? The limitations of numerical techniques make it impossible to consider more than a few droplets or bubbles. They also force us to stay at low Reynolds or Weber numbers, which prevent us from finding a direct solution to the breakup problem. However, these methods are potentially important. First, the continuous improvement of computational power (or, what amounts to the same, the drop in megaflop price) continuously extends the range of affordable problems. Second, and more importantly, the phenomena we consider often happen on scales of space and time where experimental visualization is difficult or impossible. In such cases, numerical simulation may be a useful prod to the intuition of the physicist, the engineer, or the mathematician. A typical example of interfacial flow is the collision between two liquid droplets. Finding the flow involves the study not only of hydrodynamic fields in the air and water phases but also of the air-water interface. This latter part

1,949 citations

Journal ArticleDOI
TL;DR: A new numerical method for treating interfaces in Eulerian schemes that maintains a Heaviside profile of the density with no numerical smearing along the lines of earlier work and most Lagrangian schemes is proposed.

1,933 citations

Journal ArticleDOI
TL;DR: A new model and a solution method for two-phase compressible flows is proposed that provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.

906 citations

Journal ArticleDOI
TL;DR: This is really two separate books within the same pair of covers, which are devoted to the discussion of similarity and dimensional, methods and their application to a variety of problems in mechanics and fluid mechanics.
Abstract: By L I Sedov London: Cleaver-Hume Press Ltd Pp xvi + 363 Price 105s This is really two separate books within the same pair of covers First of all Chapters 1-3, some 145 pages, are devoted to the discussion of similarity and dimensional, methods and their application to a variety of problems in mechanics and fluid mechanics

697 citations