scispace - formally typeset
Search or ask a question
Author

Richard W. Carthew

Bio: Richard W. Carthew is an academic researcher from Northwestern University. The author has contributed to research in topics: RNA interference & Gene silencing. The author has an hindex of 51, co-authored 120 publications receiving 18845 citations. Previous affiliations of Richard W. Carthew include University of Pittsburgh & University of Chicago.


Papers
More filters
Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations

Journal ArticleDOI
02 Apr 2004-Cell
TL;DR: The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi), and it is found that Dicer-1 and Dic-2 are required for siRNA-directed mRNA cleavage, though the RN enzyme III activity of Dicer -2 is not required.

1,316 citations

Journal ArticleDOI
23 Dec 1998-Cell
TL;DR: Investigation of the potential of double-stranded RNA to interfere with the function of genes in Drosophila demonstrated that dsRNA interference can be used to analyze many aspects of gene function.

1,103 citations

Journal ArticleDOI
21 Apr 2006-Science
TL;DR: This work demonstrates that an RNA interference pathway protects adult flies from infection by two evolutionarily diverse viruses and describes a molecular framework for the viral immunity, in which viral double-stranded RNA produced during infection acts as the pathogen trigger whereas Drosophila Dicer-2 and Argonaute-2 act as host sensor and effector, respectively.
Abstract: Innate immunity against bacterial and fungal pathogens is mediated by Toll and immune deficiency (Imd) pathways, but little is known about the antiviral response in Drosophila. Here, we demonstrate that an RNA interference pathway protects adult flies from infection by two evolutionarily diverse viruses. Our work also describes a molecular framework for the viral immunity, in which viral double-stranded RNA produced during infection acts as the pathogen trigger whereas Drosophila Dicer-2 and Argonaute-2 act as host sensor and effector, respectively. These findings establish a Drosophila model for studying the innate immunity against viruses in animals.

728 citations

Journal ArticleDOI
16 Jun 2005-Nature
TL;DR: It is concluded that dcr-1 mutant GSCs are delayed in the G1 to S transition, which is dependent on the cyclin-dependent kinase inhibitor Dacapo, suggesting that miRNAs are required for stem cells to bypass the normal G1/S checkpoint.
Abstract: The trademark property of stem cells is their capacity to multiply in tissues when other cells are quiescent. Somehow they by-pass the cell division stop signals. An experiment in which microRNA processing was blocked in Drosophila germline stem cells suggests that these gene-silencing regulatory molecules are part of a mechanism that makes stem cells insensitive to environmental signals that normally stop cells at the G1/S transition in the cell cycle. Without microRNAs, germ cells stop dividing just like ‘normal’ cells. Three papers in last week's Nature highlighted the role of microRNAs in human cancer: it is possible that the unregulated division of tumour cells and the regulation of stem cell division are two sides of the same microRNA coin. On the cover, stem cells lacking microRNAs stop dividing due to over-production of the tumour suppressor p21/p27. One of the key characteristics of stem cells is their capacity to divide for long periods of time in an environment where most of the cells are quiescent. Therefore, a critical question in stem cell biology is how stem cells escape cell division stop signals. Here, we report the necessity of the microRNA (miRNA) pathway1,2,3,4 for proper control of germline stem cell (GSC) division in Drosophila melanogaster. Analysis of GSCs mutant for dicer-1 (dcr-1), the double-stranded RNaseIII essential for miRNA biogenesis, revealed a marked reduction in the rate of germline cyst production. These dcr-1 mutant GSCs exhibit normal identity but are defective in cell cycle control. On the basis of cell cycle markers and genetic interactions, we conclude that dcr-1 mutant GSCs are delayed in the G1 to S transition, which is dependent on the cyclin-dependent kinase inhibitor Dacapo, suggesting that miRNAs are required for stem cells to bypass the normal G1/S checkpoint. Hence, the miRNA pathway might be part of a mechanism that makes stem cells insensitive to environmental signals that normally stop the cell cycle at the G1/S transition.

708 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The GAL4 system, a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns, has been designed and used to expand the domain of embryonic expression of the homeobox protein even-skipped.
Abstract: We have designed a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissue- and cell-specific patterns. The gene encoding the yeast transcriptional activator GAL4 is inserted randomly into the Drosophila genome to drive GAL4 expression from one of a diverse array of genomic enhancers. It is then possible to introduce a gene containing GAL4 binding sites within its promoter, to activate it in those cells where GAL4 is expressed, and to observe the effect of this directed misexpression on development. We have used GAL4-directed transcription to expand the domain of embryonic expression of the homeobox protein even-skipped. We show that even-skipped represses wingless and transforms cells that would normally secrete naked cuticle into denticle secreting cells. The GAL4 system can thus be used to study regulatory interactions during embryonic development. In adults, targeted expression can be used to generate dominant phenotypes for use in genetic screens. We have directed expression of an activated form of the Dras2 protein, resulting in dominant eye and wing defects that can be used in screens to identify other members of the Dras2 signal transduction pathway.

9,460 citations