scispace - formally typeset
Search or ask a question
Author

Richard W. Olsen

Bio: Richard W. Olsen is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: GABAA receptor & Epilepsy. The author has an hindex of 71, co-authored 308 publications receiving 23298 citations. Previous affiliations of Richard W. Olsen include University of California, Riverside & University of Colorado Denver.


Papers
More filters
Journal ArticleDOI
TL;DR: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS.
Abstract: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS. Following release from presynaptic vesicles, GABA exerts fast inhibitory effects by interacting with GABA receptors, whose primary function is to hyperpolarize neuronal membranes in mature CNS neurons. GABA receptors are found both presynaptically, where they decrease the likelihood of neurotransmitter release, and postsynaptically, where they decrease the likelihood of neuronal firing. There are two types of GABA receptor, termed GABA A and GABA B receptors. GABA A receptors are fast-activating Clˉ channels from the Cys-loop family of ligand-gated ion channels. Activation of GABA A receptors causes membrane hyperpolarization by allowing Clˉ influx, reflecting the relatively low concentration of Clˉ found intracellularly in most adult CNS neurons. GABA A receptors can also mediate depolarizing responses in most immature CNS neurons and in mature peripheral neurons.

1,991 citations

Journal Article
TL;DR: This article does not aim to review in detail the properties of γ-aminobutyric acidA(GABAA)breceptors, but in this same journal, a review of the binding properties and pharmacology of these receptors has been published.
Abstract: This article does not aim to review in detail the properties of γ-aminobutyric acidA(GABAA)breceptors, because recent accounts of that topic are available. In this same journal, a review of the binding properties and pharmacology of these receptors has been published ([Sieghart, 1995][1]). Other

1,291 citations

Journal ArticleDOI
TL;DR: This review attempts to summarize experimental evidence on the existence of defined native GABAA receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge, and proposes several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a lists of native hetero-oligomeric subtypes.
Abstract: In this review we attempt to summarize experimental evidence on the existence of defined native GABA(A) receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABA(A) receptors (Pharmacol Rev 50:291-313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABA(A) receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABA(A) receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABA(A) receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: "identified," "existence with high probability," and "tentative."

989 citations

Journal ArticleDOI
TL;DR: Subpopulations of GABAA receptors with different cellular and regional locations show differential sensitivity to GABA, to modulators like steroids, to physiological regulation, to disease processes, and to pharmacological manipulation by drugs such as benzodiazepines.
Abstract: The major type of receptor for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), called the GABAA receptor, is a member of a gene superfamily of ligand-gated ion channels. This receptor is a hetero-oligomeric protein composed of several distinct polypeptide types (alpha, beta, gamma, and delta). Molecular cloning of these polypeptides reveals that they show 20-40% identity with each other, and 10-20% identity with polypeptides of the nicotinic acetylcholine receptors and strychnine-sensitive glycine receptor. Each polypeptide type is also represented by a family of genes whose members have 60-80% amino acid sequence identity. Regions of conserved and variable amino acid sequence suggest structural and functional domains within each polypeptide. All of the polypeptides when expressed in heterologous cells produce GABA-activated chloride channels, and the different subtypes express different pharmacological properties. The distributions of mRNAs for the different GABAA receptor polypeptides and their subtypes show significant brain regional variation consistent with pharmacological and biochemical evidence for receptor heterogeneity. Subpopulations of GABAA receptors with different cellular and regional locations show differential sensitivity to GABA, to modulators like steroids, to physiological regulation, to disease processes, and to pharmacological manipulation by drugs such as benzodiazepines. The properties of the different subpopulations of GABAA receptors are determined by which one or more of the different polypeptides and their subtypes are expressed in a given cell to produce a variety of different oligomeric protein structures. Molecular cloning techniques have produced rapid advances in understanding the GABAA receptor protein family.

971 citations

Journal ArticleDOI
TL;DR: This mini-review attempts to update experimental evidence on the existence of GABA(A) receptor pharmacological subtypes and to produce a list of those native receptors that exist and proposes several criteria for including a receptor hetero-oligomeric subtype candidate on a lists of native subtypes, and a working GABA( A) receptor list.

865 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the rat microtubule‐associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing.
Abstract: Little is known about the protein constituents of autophagosome membranes in mammalian cells. Here we demonstrate that the rat microtubule-associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing. Two forms of LC3, called LC3-I and -II, were produced post-translationally in various cells. LC3-I is cytosolic, whereas LC3-II is membrane bound. The autophagic vacuole fraction prepared from starved rat liver was enriched with LC3-II. Immunoelectron microscopy on LC3 revealed specific labelling of autophagosome membranes in addition to the cytoplasmic labelling. LC3-II was present both inside and outside of autophagosomes. Mutational analyses suggest that LC3-I is formed by the removal of the C-terminal 22 amino acids from newly synthesized LC3, followed by the conversion of a fraction of LC3-I into LC3-II. The amount of LC3-II is correlated with the extent of autophagosome formation. LC3-II is the first mammalian protein identified that specifically associates with autophagosome membranes.

6,244 citations

Journal ArticleDOI
Yong Qiu1, Kinam Park1
TL;DR: Development of environmentally sensitive hydrogels with a wide array of desirable properties can be made is a formidable challenge, however, if the achievements of the past can be extrapolated into the future, it is highly likely that responsive hydrogelWith such properties can been made.

4,216 citations

Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations

Journal ArticleDOI
TL;DR: Key concepts and specific features of small-molecule–protein docking methods are reviewed, selected applications are highlighted and recent advances that aim to address the acknowledged limitations of established approaches are discussed.
Abstract: Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches

2,853 citations