scispace - formally typeset
Search or ask a question
Author

Richard W. Siegel

Bio: Richard W. Siegel is an academic researcher from Rensselaer Polytechnic Institute. The author has contributed to research in topics: Nanocomposite & Nanoparticle. The author has an hindex of 55, co-authored 124 publications receiving 13431 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results of the present study provided the first evidence of enhanced long-term (on the order of days to weeks) functions of osteoblasts cultured on nanophase ceramics, and clearly represent a unique and promising class of orthopaedic/dental implant formulations with improved osseointegrative properties.

1,275 citations

Journal ArticleDOI
TL;DR: Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics.
Abstract: Osteoblast, fibroblast, and endothelial cell adhesion on nanophase (that is, materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) was investigated using in vitro cellular models. Osteoblast adhesion was significantly (p < 0.01) greater after 4 h on nanophase alumina, titania, and HA than it was on conventional formulations of the same ceramics. In contrast, compared to conventional alumina, titania, and HA, after 4 h fibroblast adhesion was significantly (p < 0.01) less on nanophase ceramics. Examination of the underlying mechanism(s) of cell adhesion on nanophase ceramics revealed that these ceramics adsorbed significantly (p < 0.01) greater quantities of vitronectin, which, subsequently, may have contributed to the observed select enhanced adhesion of osteoblasts. Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics. The capability of synthesizing and processing nanomaterials with tailored (through, for example, specific grain and pore size) structures and topographies to control select subsequent cell functions provides the possibility of designing the novel proactive biomaterials (that is, materials that elicit specific, timely, and desirable responses from surrounding cells and tissues) necessary for improved implant efficacy.

986 citations

Journal ArticleDOI
TL;DR: Evidence is provided of the ability of nanophase alumina and titania to simulate material characteristics of physiological bone that enhance protein interactions (such as adsorption, configuration, bioactivity, etc.) and subsequent osteoblast adhesion.

890 citations

Journal ArticleDOI
27 May 2004-Langmuir
TL;DR: The results indicate that the size of the nanoparticle, perhaps because of the contributions of surface curvature, influences adsorbed protein structure and function.
Abstract: Adsorption of chicken egg lysozyme on silica nanoparticles of various diameters has been studied. Special attention has been paid to the effect of nanoparticle size on the structure and function of the adsorbed protein molecules. Both adsorption patterns and protein structure and function are strongly dependent on the size of the nanoparticles. Formation of molecular complexes is observed for adsorption onto 4-nm silica. True adsorptive behavior is evident on 20- and 100-nm particles, with the former resulting in monolayer adsorption and the latter yielding multilayer adsorption. A decrease in the solution pH results in a decrease in lysozyme adsorption. A change of protein structure upon adsorption is observed, as characterized by a loss in alpha-helix content, and this is strongly dependent on the size of the nanoparticle and the solution pH. Generally, greater loss of alpha helicity was observed for the lysozyme adsorbed onto larger nanoparticles under otherwise similar conditions. The activity of lysozyme adsorbed onto silica nanoparticles is lower than that of the free protein, and the fraction of activity lost correlates well with the decrease in alpha-helix content. These results indicate that the size of the nanoparticle, perhaps because of the contributions of surface curvature, influences adsorbed protein structure and function.

811 citations

Journal ArticleDOI
TL;DR: Gold nanoparticles were selectively attached to chemically functionalized surface sites on nitrogen-doped carbon (CNx) nanotubes by electrostatic interaction between carboxyl groups on the chemically oxidized nanotube surface and polyelectrolyte chains as discussed by the authors.
Abstract: Gold nanoparticles were selectively attached to chemically functionalized surface sites on nitrogen-doped carbon (CNx) nanotubes. A cationic polyelectrolyte was adsorbed on the surface of the nanotubes by electrostatic interaction between carboxyl groups on the chemically oxidized nanotube surface and polyelectrolyte chains. Negatively charged 10 nm gold nanoparticles from a gold colloid suspension were subsequently anchored to the surface of the nanotubes through the electrostatic interaction between the polyelectrolyte and the nanoparticles. This approach provides an efficient method to attach other nanostructures to carbon nanotubes and can be used as an illustrative detection of the functional groups on carbon nanotube surfaces.

522 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Abstract: Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.

8,323 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of alloy chemistry, thermomechanical processing and surface condition on these properties is discussed and various surface modification techniques to achieve superior biocompatibility, higher wear and corrosion resistance.

4,113 citations