scispace - formally typeset
Search or ask a question
Author

Rika Draenert

Bio: Rika Draenert is an academic researcher from Ludwig Maximilian University of Munich. The author has contributed to research in topics: Cytotoxic T cell & Epitope. The author has an hindex of 28, co-authored 61 publications receiving 5219 citations. Previous affiliations of Rika Draenert include Harvard University & Howard Hughes Medical Institute.
Topics: Cytotoxic T cell, Epitope, T cell, Viral load, CD8


Papers
More filters
Journal ArticleDOI
TL;DR: Data show that the process of accumulation of escape mutations within HIV is not inevitable, and complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.
Abstract: Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.

892 citations

Journal ArticleDOI
TL;DR: The data suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.
Abstract: Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.

719 citations

Journal ArticleDOI
05 Dec 2003-AIDS
TL;DR: It is demonstrated that host genetic factors can influence the clinical manifestations of acute HIV-1 infection and provide a functional link between HLA-B57 and viral immune control.
Abstract: BACKGROUND HLA-B57, as well as cytotoxic T-lymphocyte (CTL) responses restricted by this allele, have been strongly associated with long-term non-progressive chronic HIV-1 infection. However, their impact on viral replication during acute HIV-1 infection is not known. METHODS Clinical and immunological parameters during acute and early HIV-1 infection in individuals expressing HLA-B57 were assessed. HIV-1-specific T-cell responses were determined by peptide-specific interferon-gamma production measured using Elispot assay and flow-based intracellular cytokine quantification. RESULTS Individuals expressing HLA-B57 presented significantly less frequently with symptomatic acute HIV-1 infection (4/116, 3.4%) than expected from the frequency of chronically infected individuals expressing this allele (43/446, 9.6%; P < 0.05). During acute infection, virus-specific CD8 T-cell responses were dominated by HLA-B57-restricted responses, with significantly broader (P < 0.02) and stronger (P < 0.03) responses restricted by HLA-B57 than restricted by all other co-expressed HLA class I alleles combined. Six out of nine individuals expressing HLA-B57 controlled HIV-1 viremia in the absence of therapy at levels < 5000 copies/ml (median, 515 copies/ml) during up to 29 months following acute infection. CONCLUSION These data demonstrate that host genetic factors can influence the clinical manifestations of acute HIV-1 infection and provide a functional link between HLA-B57 and viral immune control.

370 citations

Journal ArticleDOI
TL;DR: A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses.
Abstract: The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.

357 citations

Journal ArticleDOI
TL;DR: It is demonstrated that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing and is of major relevance in the construction of vaccine sequences.
Abstract: Mutations within cytotoxic T lymphocyte (CTL) epitopes impair T cell recognition, but escape mutations arising in flanking regions that alter antigen processing have not been defined in natural human infections. In human histocompatibility leukocyte antigen (HLA)-B57+ HIV-infected persons, immune selection pressure leads to a mutation from alanine to proline at Gag residue 146 immediately preceding the NH2 terminus of a dominant HLA-B57–restricted epitope, ISPRTLNAW. Although N-extended wild-type or mutant peptides remained well-recognized, mutant virus–infected CD4 T cells failed to be recognized by the same CTL clones. The A146P mutation prevented NH2-terminal trimming of the optimal epitope by the endoplasmic reticulum aminopeptidase I. These results demonstrate that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing. Identifying such mutations is of major relevance in the construction of vaccine sequences.

318 citations


Cited by
More filters
Journal ArticleDOI
21 Sep 2006-Nature
TL;DR: The data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function.
Abstract: Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.

2,525 citations

Journal ArticleDOI
TL;DR: The nature and extent of CD4+ T cell depletion in lymphoid tissue is defined and mechanisms of profound depletion of specific T cell subsets related to elimination of CCR5+ CD4- T cell targets and disruption of T cell homeostasis that accompanies chronic immune activation are pointed to.
Abstract: The mechanisms underlying CD4+ T cell depletion in human immunodeficiency virus (HIV) infection are not well understood. Comparative studies of lymphoid tissues, where the vast majority of T cells reside, and peripheral blood can potentially illuminate the pathogenesis of HIV-associated disease. Here, we studied the effect of HIV infection on the activation and depletion of defined subsets of CD4+ and CD8+ T cells in the blood, gastrointestinal (GI) tract, and lymph node (LN). We also measured HIV-specific T cell frequencies in LNs and blood, and LN collagen deposition to define architectural changes associated with chronic inflammation. The major findings to emerge are the following: the GI tract has the most substantial CD4+ T cell depletion at all stages of HIV disease; this depletion occurs preferentially within CCR5+ CD4+ T cells; HIV-associated immune activation results in abnormal accumulation of effector-type T cells within LNs; HIV-specific T cells in LNs do not account for all effector T cells; and T cell activation in LNs is associated with abnormal collagen deposition. Taken together, these findings define the nature and extent of CD4+ T cell depletion in lymphoid tissue and point to mechanisms of profound depletion of specific T cell subsets related to elimination of CCR5+ CD4+ T cell targets and disruption of T cell homeostasis that accompanies chronic immune activation.

1,834 citations

Journal ArticleDOI
15 Jun 2006-Blood
TL;DR: The quality of the HIV-specific CD8(+) T-cell functional response serves as an immune correlate of HIV disease progression and a potential qualifying factor for evaluation of HIV vaccine efficacy.

1,825 citations

01 Jan 2006
TL;DR: These guidelines are primarily intended for use by national and regional HIV programme managers managers of nongovernmental organizations delivering HIV care services and other policy-makers who are involved in the scaling up of comprehensive HIV care and ART in resource-limited countries.
Abstract: This publication is intended to serve as a reference tool for countries with limited resources as they develop or revise national guidelines for the use of ART in adults and postpubertal adolescents (see Annex 9 for pubertal Tanner staging; prepubertal adolescents should follow the WHO paediatric guidelines). The material presented takes updated evidence into account including new ART treatment options and draws on the experience of established ART scale-up programmes. The simplified approach with evidence-based standards continues to be the basis of WHO recommendations for the initiation and monitoring of ART. The guidelines are primarily intended for use by national and regional HIV programme managers managers of nongovernmental organizations delivering HIV care services and other policy-makers who are involved in the scaling up of comprehensive HIV care and ART in resource-limited countries. The comprehensive up-to-date technical and clinical information on the use of ART however also makes these guidelines useful for clinicians in resource-limited settings. The recommendations contained in these guidelines are made on the basis of different levels of evidence from randomized clinical trials high-quality scientific studies observational cohort data and where insufficient evidence is available expert opinion. The strengths of the recommendations in Table 1 are intended to indicate the degrees to which the recommendations should be considered by regional and country programmes. Cost-effectiveness is not explicitly considered as part of the recommendations although the realities of human resources health system infrastructures and socioeconomic issues should be taken into account when the recommendations are being adapted to regional and country programmes. (excerpt)

1,454 citations

Journal ArticleDOI
17 Aug 2007-Science
TL;DR: Using a whole-genome association strategy, polymorphisms that explain nearly 15% of the variation among individuals in viral load during the asymptomatic set-point period of infection are identified.
Abstract: Understanding why some people establish and maintain effective control of HIV-1 and others do not is a priority in the effort to develop new treatments for HIV/AIDS. Using a whole-genome association strategy, we identified polymorphisms that explain nearly 15% of the variation among individuals in viral load during the asymptomatic set-point period of infection. One of these is found within an endogenous retroviral element and is associated with major histocompatibility allele human leukocyte antigen (HLA)-B*5701, whereas a second is located near the HLA-C gene. An additional analysis of the time to HIV disease progression implicated two genes, one of which encodes an RNA polymerase I subunit. These findings emphasize the importance of studying human genetic variation as a guide to combating infectious agents.

1,230 citations