scispace - formally typeset
Search or ask a question
Author

Rima Rozen

Bio: Rima Rozen is an academic researcher from McGill University. The author has contributed to research in topics: Methylenetetrahydrofolate reductase & Homocysteine. The author has an hindex of 64, co-authored 212 publications receiving 25630 citations. Previous affiliations of Rima Rozen include National Center for Toxicological Research & University of Calgary.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes and may represent an important genetic risk factor in vascular disease.
Abstract: Hyperhomocysteinaemia has been identified as a risk factor for cerebrovascular, peripheral vascular and coronary heart disease. Elevated levels of plasma homocysteine can result from genetic or nutrient-related disturbances in the trans-sulphuration or re-methylation pathways for homocysteine metabolism. 5, 10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the predominant circulatory form of folate and carbon donor for the re-methylation of homocysteine to methionine. Reduced MTHFR activity with a thermolabile enzyme has been reported in patients with coronary and peripheral artery disease. We have identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes. The mutation in the heterozygous or homozygous state correlates with reduced enzyme activity and increased thermolability in lymphocyte extracts; in vitro expression of a mutagenized cDNA containing the mutation confirms its effect on thermolability of MTHFR. Finally, individuals homozygous for the mutation have significantly elevated plasma homocysteine levels. This mutation in MTHFR may represent an important genetic risk factor in vascular disease.

5,606 citations

Journal ArticleDOI
TL;DR: Individuals with thermolabile MTHFR may have a higher folate requirement for regulation of plasma homocysteine concentrations; folate supplementation may be necessary to prevent fasting hyperhomocysteinemia in such persons.
Abstract: Background Methylenetetrahydrofolate reductase (MTHFR) synthesizes 5-methyltetrahydrofolate, the major carbon donor in remethylation of homocysteine to methionine. A common MTHFR mutation, an alanine-to-valine substitution, renders the enzyme thermolabile and may cause elevated plasma levels of the amino acid homocysteine. Methods and Results To assess the potential interaction between this mutation and vitamin coenzymes in homocysteine metabolism, we screened 365 individuals from the NHLBI Family Heart Study. Among individuals with lower plasma folate concentrations (<15.4 nmol/L), those with the homozygous mutant genotype had total fasting homocysteine levels that were 24% greater (P<.05) than individuals with the normal genotype. A difference between genotypes was not seen among individuals with folate levels ≥15.4 nmol/L. Conclusions Individuals with thermolabile MTHFR may have a higher folate requirement for regulation of plasma homocysteine concentrations; folate supplementation may be necessary to ...

1,402 citations

Journal ArticleDOI
TL;DR: A second common variant in MTHFR (A1298C), an E to A substitution, was characterized, associated with decreased enzyme activity; homozygotes had approximately 60% of control activity in lymphocytes, lower than that seen in single heterozygotes for the C677T variant.

1,271 citations

Journal ArticleDOI
TL;DR: Two mutations were identified in MTHFR–deficient patients: a missense mutation in a residue conserved in bacterial enzymes, and a nonsense mutation (Arg to Ter) that results in homocysteine methylation to methionine.
Abstract: Methylenetetrahydrofolate reductase (MTHFR) catalyses the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, a cofactor for homocysteine methylation to methionine. MTHFR deficiency, an autosomal recessive disorder, results in homocysteinemia. Using degenerate oligonucleotides based on porcine peptide sequence data, we isolated a 90-bp cDNA by PCR from pig liver RNA. This cDNA was used to isolate a human cDNA, the predicted amino acid sequence of which shows strong homology to porcine MTHFR and to bacterial metF genes. The human gene has been localized to chromosome 1p36.3. Two mutations were identified in MTHFR-deficient patients: a missense mutation (Arg to Gln), in a residue conserved in bacterial enzymes, and a nonsense mutation (Arg to Ter).

902 citations


Cited by
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
TL;DR: This work has identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes and may represent an important genetic risk factor in vascular disease.
Abstract: Hyperhomocysteinaemia has been identified as a risk factor for cerebrovascular, peripheral vascular and coronary heart disease. Elevated levels of plasma homocysteine can result from genetic or nutrient-related disturbances in the trans-sulphuration or re-methylation pathways for homocysteine metabolism. 5, 10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the predominant circulatory form of folate and carbon donor for the re-methylation of homocysteine to methionine. Reduced MTHFR activity with a thermolabile enzyme has been reported in patients with coronary and peripheral artery disease. We have identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes. The mutation in the heterozygous or homozygous state correlates with reduced enzyme activity and increased thermolability in lymphocyte extracts; in vitro expression of a mutagenized cDNA containing the mutation confirms its effect on thermolability of MTHFR. Finally, individuals homozygous for the mutation have significantly elevated plasma homocysteine levels. This mutation in MTHFR may represent an important genetic risk factor in vascular disease.

5,606 citations

Journal ArticleDOI
04 Oct 1995-JAMA
TL;DR: Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease and under different assumptions, 13,500 to 50,000 CAD deaths annually could be avoided.
Abstract: Objective. —To determine the risk of elevated total homocysteine (tHcy) levels for arteriosclerotic vascular disease, estimate the reduction of tHcy by folic acid, and calculate the potential reduction of coronary artery disease (CAD) mortality by increasing folic acid intake. Data Sources. —MEDLINE search for meta-analysis of 27 studies relating homocysteine to arteriosclerotic vascular disease and 11 studies of folic acid effects on tHcy levels. Study Selection and Data Extraction. —Studies dealing with CAD, cerebrovascular disease, and peripheral arterial vascular disease were selected. Three prospective and six population-based case-control studies were considered of high quality. Five cross-sectional and 13 other case-control studies were also included. Causality of tHcy's role in the pathogenesis of vascular disease was inferred because of consistency across studies by different investigators using different methods in different populations. Data Synthesis. —Elevations in tHcy were considered an independent graded risk factor for arteriosclerotic vascular diseases. The odds ratio (OR) for CAD of a 5-μmol/L tHcy increment is 1.6(95% confidence interval [Cl], 1.4 to 1.7) for men and 1.8 (95% Cl, 1.3 to 1.9) for women. A total of 10% of the population's CAD risk appears attributable to tHcy. The OR for cerebrovascular disease (5-μmol/L tHcy increment) is 1.5 (95% Cl, 1.3 to 1.9). Peripheral arterial disease also showed a strong association. Increased folic acid intake (approximately 200 μg/d) reduces tHcy levels by approximately 4 μmol/L. Assuming that lower tHcy levels decrease CAD mortality, we calculated the effect of (1) increased dietary folate, (2) supplementation by tablets, and (3) grain fortification. Under different assumptions, 13 500 to 50 000 CAD deaths annually could be avoided; fortification of food had the largest impact. Conclusions. —A 5-μmol/L tHcy increment elevates CAD risk by as much as cholesterol increases of 0.5 mmol/L (20 mg/dL). Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease. Clinical trials are urgently needed. Concerns about masking cobalamin deficiency by folic acid could be lessened by adding 1 mg of cobalamin to folic acid supplements. ( JAMA . 1995;274:1049-1057)

3,722 citations

Journal ArticleDOI
TL;DR: Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function, and the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans.
Abstract: Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans.

2,659 citations

Journal ArticleDOI

2,446 citations