scispace - formally typeset
Search or ask a question
Author

Rinaldo Bellomo

Bio: Rinaldo Bellomo is an academic researcher from University of Melbourne. The author has contributed to research in topics: Intensive care & Acute kidney injury. The author has an hindex of 147, co-authored 1714 publications receiving 120052 citations. Previous affiliations of Rinaldo Bellomo include The George Institute for Global Health & Iwate Medical University.


Papers
More filters
Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: A 2-day consensus conference on acute renal failure (ARF) in critically ill patients was organized by ADQI as discussed by the authors, where the authors sought to review the available evidence, make recommendations and delineate key questions for future studies.
Abstract: There is no consensus definition of acute renal failure (ARF) in critically ill patients. More than 30 different definitions have been used in the literature, creating much confusion and making comparisons difficult. Similarly, strong debate exists on the validity and clinical relevance of animal models of ARF; on choices of fluid management and of end-points for trials of new interventions in this field; and on how information technology can be used to assist this process. Accordingly, we sought to review the available evidence, make recommendations and delineate key questions for future studies. We undertook a systematic review of the literature using Medline and PubMed searches. We determined a list of key questions and convened a 2-day consensus conference to develop summary statements via a series of alternating breakout and plenary sessions. In these sessions, we identified supporting evidence and generated recommendations and/or directions for future research. We found sufficient consensus on 47 questions to allow the development of recommendations. Importantly, we were able to develop a consensus definition for ARF. In some cases it was also possible to issue useful consensus recommendations for future investigations. We present a summary of the findings. (Full versions of the six workgroups' findings are available on the internet at http://www.ADQI.net ) Despite limited data, broad areas of consensus exist for the physiological and clinical principles needed to guide the development of consensus recommendations for defining ARF, selection of animal models, methods of monitoring fluid therapy, choice of physiological and clinical end-points for trials, and the possible role of information technology.

6,072 citations

Journal ArticleDOI
TL;DR: In this large, international, randomized trial, it was found that intensive glucose control increased mortality among adults in the ICU: a blood glucose target of 180 mg or less per deciliter resulted in lower mortality than did a target of 81 to 108 mg perDeciliter.
Abstract: Background: The optimal target range for blood glucose in critically ill patients remains unclear. Methods: Within 24 hours after admission to an intensive care unit (ICU), adults who were expected to require treatment in the ICU on 3 or more consecutive days were randomly assigned to undergo either intensive glucose control, with a target blood glucose range of 81 to 108 mg per deciliter (4.5 to 6.0 mmol per liter), or conventional glucose control, with a target of 180 mg or less per deciliter (10.0 mmol or less per liter). We defined the primary end point as death from any cause within 90 days after randomization. Results: Of the 6104 patients who underwent randomization, 3054 were assigned to undergo intensive control and 3050 to undergo conventional control; data with regard to the primary outcome at day 90 were available for 3010 and 3012 patients, respectively. The two groups had similar characteristics at baseline. A total of 829 patients (27.5%) in the intensive-control group and 751 (24.9%) in the conventional-control group died (odds ratio for intensive control, 1.14; 95% confidence interval, 1.02 to 1.28; P=0.02). The treatment effect did not differ significantly between operative (surgical) patients and nonoperative (medical) patients (odds ratio for death in the intensive-control group, 1.31 and 1.07, respectively; P=0.10). Severe hypoglycemia (blood glucose level, < or = 40 mg per deciliter [2.2 mmol per liter]) was reported in 206 of 3016 patients (6.8%) in the intensive-control group and 15 of 3014 (0.5%) in the conventional-control group (P<0.001). There was no significant difference between the two treatment groups in the median number of days in the ICU (P=0.84) or hospital (P=0.86) or the median number of days of mechanical ventilation (P=0.56) or renal-replacement therapy (P=0.39). Conclusions: In this large, international, randomized trial, we found that intensive glucose control increased mortality among adults in the ICU: a blood glucose target of 180 mg or less per deciliter resulted in lower mortality than did a target of 81 to 108 mg per deciliter. (ClinicalTrials.gov number, NCT00220987.)

4,241 citations

Journal ArticleDOI
17 Aug 2005-JAMA
TL;DR: In this article, the period prevalence of acute renal failure (ARF) requiring renal replacement therapy (RRT) was found to be between 5% and 6% and was associated with a high hospital mortality rate.
Abstract: ContextAlthough acute renal failure (ARF) is believed to be common in the setting of critical illness and is associated with a high risk of death, little is known about its epidemiology and outcome or how these vary in different regions of the world.ObjectivesTo determine the period prevalence of ARF in intensive care unit (ICU) patients in multiple countries; to characterize differences in etiology, illness severity, and clinical practice; and to determine the impact of these differences on patient outcomes.Design, Setting, and PatientsProspective observational study of ICU patients who either were treated with renal replacement therapy (RRT) or fulfilled at least 1 of the predefined criteria for ARF from September 2000 to December 2001 at 54 hospitals in 23 countries.Main Outcome MeasuresOccurrence of ARF, factors contributing to etiology, illness severity, treatment, need for renal support after hospital discharge, and hospital mortality.ResultsOf 29 269 critically ill patients admitted during the study period, 1738 (5.7%; 95% confidence interval [CI], 5.5%-6.0%) had ARF during their ICU stay, including 1260 who were treated with RRT. The most common contributing factor to ARF was septic shock (47.5%; 95% CI, 45.2%-49.5%). Approximately 30% of patients had preadmission renal dysfunction. Overall hospital mortality was 60.3% (95% CI, 58.0%-62.6%). Dialysis dependence at hospital discharge was 13.8% (95% CI, 11.2%-16.3%) for survivors. Independent risk factors for hospital mortality included use of vasopressors (odds ratio [OR], 1.95; 95% CI, 1.50-2.55; P<.001), mechanical ventilation (OR, 2.11; 95% CI, 1.58-2.82; P<.001), septic shock (OR, 1.36; 95% CI, 1.03-1.79; P = .03), cardiogenic shock (OR, 1.41; 95% CI, 1.05-1.90; P = .02), and hepatorenal syndrome (OR, 1.87; 95% CI, 1.07-3.28; P = .03).ConclusionIn this multinational study, the period prevalence of ARF requiring RRT in the ICU was between 5% and 6% and was associated with a high hospital mortality rate.

3,706 citations

Journal ArticleDOI
TL;DR: In patients in the ICU, use of either 4 percent albumin or normal saline for fluid resuscitation results in similar outcomes at 28 days, with no significant differences between the groups.
Abstract: background It remains uncertain whether the choice of resuscitation fluid for patients in intensive care units (ICUs) affects survival. We conducted a multicenter, randomized, double-blind trial to compare the effect of fluid resuscitation with albumin or saline on mortality in a heterogeneous population of patients in the ICU. methods We randomly assigned patients who had been admitted to the ICU to receive either 4 percent albumin or normal saline for intravascular-fluid resuscitation during the next 28 days. The primary outcome measure was death from any cause during the 28-day period after randomization. results Of the 6997 patients who underwent randomization, 3497 were assigned to receive albumin and 3500 to receive saline; the two groups had similar baseline characteristics. There were 726 deaths in the albumin group, as compared with 729 deaths in the saline group (relative risk of death, 0.99; 95 percent confidence interval, 0.91 to 1.09; P=0.87). The proportion of patients with new single-organ and multiple-organ failure was similar in the two groups (P=0.85). There were no significant differences between the groups in the mean (±SD) numbers of days spent in the ICU (6.5±6.6 in the albumin group and 6.2±6.2 in the saline group, P=0.44), days spent in the hospital (15.3±9.6 and 15.6±9.6, respectively; P = 0.30), days of mechanical ventilation (4.5±6.1 and 4.3±5.7, respectively; P = 0.74), or days of renal-replacement therapy (0.5±2.3 and 0.4±2.0, respectively; P = 0.41). conclusions In patients in the ICU, use of either 4 percent albumin or normal saline for fluid resuscitation results in similar outcomes at 28 days.

2,360 citations


Cited by
More filters
Book
23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

21,235 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.

20,189 citations

Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations