Author
Rinku Mukherjee
Other affiliations: North Carolina State University
Bio: Rinku Mukherjee is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topic(s): Airfoil & Decambering. The author has an hindex of 5, co-authored 31 publication(s) receiving 147 citation(s). Previous affiliations of Rinku Mukherjee include North Carolina State University.
Topics: Airfoil, Decambering, Aerodynamics, Vortex, Vortex lattice method
Papers
More filters
TL;DR: In this article, a novel scheme is presented for an iterative decambering approach to predict the post-stall characteristics of wings using known section data as inputs, which differs from earlier ones in the details of how the residual is computed.
Abstract: A novel scheme is presented for an iterative decambering approach to predict the post-stall characteristics of wings using known section data as inputs. The new scheme differs from earlier ones in the details of how the residual is computed. With this scheme, multiple solutions at high angles of attack are brought to light right during the computation of the residual for the Newton iteration. As with earlier schemes, multiple solutions are obtained for wings at high angles of attack and the resulting converged solution depends on the initial conditions used for the iteration. In general, the new scheme is found to be more robust at achieving convergence. Results are presented for a rectangular wing with two different airfoil lift curves and for a wing-tail configuration.
60 citations
01 Jan 2003
TL;DR: An iterative decambering approach for the post stall prediction of wings using known section data as inputs is presented in this article, which can currently be used for incompressible.ow and can be extended to compressible subsonic.ow using Mach number correction schemes.
Abstract: An iterative decambering approach for the post stall prediction of wings using known section data as inputs is presented. The method can currently be used for incompressible .ow and can be extended to compressible subsonic .ow using Mach number correction schemes. A detailed discussion of past work on this topic is presented first. Next, an overview of the decambering approach is presented and is illustrated by applying the approach to the prediction of the two-dimensional C(sub l) and C(sub m) curves for an airfoil. The implementation of the approach for iterative decambering of wing sections is then discussed. A novel feature of the current e.ort is the use of a multidimensional Newton iteration for taking into consideration the coupling between the di.erent sections of the wing. The approach lends itself to implementation in a variety of finite-wing analysis methods such as lifting-line theory, discrete-vortex Weissinger's method, and vortex lattice codes. Results are presented for a rectangular wing for a from 0 to 25 deg. The results are compared for both increasing and decreasing directions of a, and they show that a hysteresis loop can be predicted for post-stall angles of attack.
42 citations
06 Jan 2003
10 citations
TL;DR: In this article, the effect of both geometric and aerodynamic twist on the induced drag of individual lifting surfaces in configuration flight including post-stall angles of attack has been investigated using a vortex lattice method.
Abstract: In this paper, a novel decambering technique has been implemented using a vortex lattice method to study the effects of wing twist on the induced drag of individual lifting surfaces in configuration flight including post-stall angles of attack. The effect of both geometric and aerodynamic twist is studied. In the present work, 2D data of NACA0012 airfoil from XFoil at R e = 1 × 10 6 is used to predict 3D post-stall data using geometric twist for a single wing and compared with literature. The effect of aerodynamic twist is implemented by using different airfoils along wing–span and the resulting wing C L –α and C d i –α are compared with experiment. Study of wings of different aspect ratios with & without aerodynamic twist on both leading and trailing wings helps to understand the effect of twist on the lift and induced drag when they are varied on both wings simultaneously and individually.
8 citations
13 Jan 2014
TL;DR: A vortex-lattice numerical scheme that uses a novel decambering technique to predict post-stall aerodynamic characteristics is used to study the aerodynamics of tandem Cessna 172 aircrafts flying in echelon formation as mentioned in this paper.
Abstract: A vortex-lattice numerical scheme that uses a novel decambering technique to predict post-stall aerodynamic characteristics is used to study the aerodynamics of tandem Cessna 172 aircrafts flying in echelon formation. Results like CL − α from the current method are compared with experiment. Additional results like section Cl distributions over wing spans, CM − α and CLW − αtw (i.e. CL of the leading aircraft for different angles of attack of the trailing aircraft) and analysis for (-)ve y-offset, which are available only from the current numerical method are reported that supplement the experimental results. Detailed post-stall numerical analysis and the effect of chord-wise, span-wise and vertical offsets on the aerodynamics of the formation are also reported.
5 citations
Cited by
More filters
TL;DR: The Unsteady Vortex-Lattice Method (UVM) as mentioned in this paper provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions.
Abstract: The Unsteady Vortex-Lattice Method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally-expensive potential-flow models, such as the Doublet-Lattice Method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the Unsteady Vortex-Lattice Method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Di erent formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the Unsteady Vortex-Lattice Method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The Unsteady Vortex-Lattice Method is unveiled as a remarkable tool that can successfully incorporate all those e ects in the unsteady aerodynamics modelling.
201 citations
TL;DR: In this article, a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous leading-edge suction parameter (LESP) was proposed.
Abstract: Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin aerofoil theory, this leading-edge suction parameter (LESP) is related to the term in the Fourier series representing the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and forces resulting from intermittent LEV shedding, thus validating the LESP concept.
174 citations
TL;DR: In this article, a nonlinear time-domain aeroelastic methodology has been integrated via tightly coupling a geometrically exact nonlinear intrinsic beam model and the generalized unsteady vortex-lattice aerodynamic model with vortex roll-up and free wake.
Abstract: Nonlinear aeroelastic analysis is essential for high-altitude long-endurance (HALE) aircraft. In the current paper, we have presented a computational aeroelastic tool for nonlinear-aerodynamics/nonlinear-structure interaction. Specifically, a consistent nonlinear time-domain aeroelastic methodology has been integrated via tightly coupling a geometrically exact nonlinear intrinsic beam model and the generalized unsteady vortex-lattice aerodynamic model with vortex roll-up and free wake. The effects of discrete gust as well as flow separation at various angles of attack from attached flow to the stall and poststall ranges are also included in the nonlinear aerodynamic model. A HALE-wing model is analyzed as a numerical example. The trim angle of attack is first found for the wing, and the results show that aeroelastic instability could occur at higher angles of attack. The HALE-wing model under the trim condition is then analyzed for various gust profiles to which it is subject. It is found that for certain gust levels, the elastic deformations of the HALE wing tend to become unstable: notably, the in-plane deflections become very significant. It is noted for the unstable solution of the HALE wing that the flow may be well beyond the stall range. An engineering approach with the use of the nonlinear sectional lift is attempted to consider such stall effects.
76 citations
TL;DR: In this article, a novel scheme is presented for an iterative decambering approach to predict the post-stall characteristics of wings using known section data as inputs, which differs from earlier ones in the details of how the residual is computed.
Abstract: A novel scheme is presented for an iterative decambering approach to predict the post-stall characteristics of wings using known section data as inputs. The new scheme differs from earlier ones in the details of how the residual is computed. With this scheme, multiple solutions at high angles of attack are brought to light right during the computation of the residual for the Newton iteration. As with earlier schemes, multiple solutions are obtained for wings at high angles of attack and the resulting converged solution depends on the initial conditions used for the iteration. In general, the new scheme is found to be more robust at achieving convergence. Results are presented for a rectangular wing with two different airfoil lift curves and for a wing-tail configuration.
60 citations
TL;DR: In this paper, a geometrically exact composite-beam formulation is used to model the vehicle flexible-body dynamics by means of an intuitive and easily linearizable representation based on the displacement and Cartesian rotation vectors.
Abstract: This work investigates the effect of aerodynamic interference in the coupled nonlinear aeroelasticity and flight mechanics of flexible lightweight aircraft at low speeds. For that purpose, a geometrically exact composite-beam formulation is used to model the vehicle flexible-body dynamics by means of an intuitive and easily linearizable representation based on the displacement and Cartesian rotation vectors. The aerodynamics are modeled using the unsteady vortex-lattice method, which captures the instantaneous shape of the lifting surfaces and the free inviscid wake, including large deformations and interference effects. This results in a framework for simulation of high aspect ratio planes that provides a medium-fidelity representation of flexible-aircraft dynamics with a modest computational cost. Previous independent studies on the structural-dynamics and aerodynamics modules are complemented here with the integrated simulation methodology, including vehicle trim, and linear and nonlinear time-domain solutions. A numerical investigation is next presented on a simple wing-fuselage-tail configuration, assessing the interference effects between wing wake and horizontal tail, and the downwash due to the proximity of the wake is shown to play a significant role in the longitudinal dynamics of the vehicle. Finally, a brief discussion of direct wake-tail encounters is included to show the limitations of the approach.
57 citations