scispace - formally typeset
Search or ask a question
Author

Rita Cucchiara

Other affiliations: ETH Zurich, Columbia University, University of Udine  ...read more
Bio: Rita Cucchiara is an academic researcher from University of Modena and Reggio Emilia. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 56, co-authored 512 publications receiving 17090 citations. Previous affiliations of Rita Cucchiara include ETH Zurich & Columbia University.


Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: A new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error are presented to help accelerate progress in multi-target, multi-camera tracking systems.
Abstract: To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080 p, 60 fps video taken by 8 cameras observing more than 2,700 identities over 85 min; and (iii) a reference software system as a comparison baseline. We show that (i) our measures properly account for bottom-line identity match performance in the multi-camera setting; (ii) our data set poses realistic challenges to current trackers; and (iii) the performance of our system is comparable to the state of the art.

1,775 citations

Journal ArticleDOI
TL;DR: It is demonstrated that trackers can be evaluated objectively by survival curves, Kaplan Meier statistics, and Grubs testing, and it is found that in the evaluation practice the F-score is as effective as the object tracking accuracy (OTA) score.
Abstract: There is a large variety of trackers, which have been proposed in the literature during the last two decades with some mixed success. Object tracking in realistic scenarios is a difficult problem, therefore, it remains a most active area of research in computer vision. A good tracker should perform well in a large number of videos involving illumination changes, occlusion, clutter, camera motion, low contrast, specularities, and at least six more aspects. However, the performance of proposed trackers have been evaluated typically on less than ten videos, or on the special purpose datasets. In this paper, we aim to evaluate trackers systematically and experimentally on 315 video fragments covering above aspects. We selected a set of nineteen trackers to include a wide variety of algorithms often cited in literature, supplemented with trackers appearing in 2010 and 2011 for which the code was publicly available. We demonstrate that trackers can be evaluated objectively by survival curves, Kaplan Meier statistics, and Grubs testing. We find that in the evaluation practice the F-score is as effective as the object tracking accuracy (OTA) score. The analysis under a large variety of circumstances provides objective insight into the strengths and weaknesses of trackers.

1,604 citations

Journal ArticleDOI
TL;DR: A general-purpose method is proposed that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects (ghosts), and shadows acquired in the processing of the previous frames to improve object segmentation and background update.
Abstract: Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approaches. The article proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects (ghosts), and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects, ghosts, and shadows are processed differently in order to supply an object-based selective update. The proposed approach exploits color information for both background subtraction and shadow detection to improve object segmentation and background update. The approach proves fast, flexible, and precise in terms of both pixel accuracy and reactivity to background changes.

1,521 citations

Journal ArticleDOI
TL;DR: This paper organizes contributions reported in the literature in four classes two of them are statistical and two are deterministic, and presents a comparative empirical evaluation of representative algorithms selected from these four classes.
Abstract: Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams since shadow points are often misclassified as object points, causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative evaluation of the existing approaches is still lacking. In this paper, we present a comprehensive survey of moving shadow detection approaches. We organize contributions reported in the literature in four classes two of them are statistical and two are deterministic. We also present a comparative empirical evaluation of representative algorithms selected from these four classes. Novel quantitative (detection and discrimination rate) and qualitative metrics (scene and object independence, flexibility to shadow situations, and robustness to noise) are proposed to evaluate these classes of algorithms on a benchmark suite of indoor and outdoor video sequences. These video sequences and associated "ground-truth" data are made available at http://cvrr.ucsd.edu/aton/shadow to allow for others in the community to experiment with new algorithms and metrics.

851 citations

Posted Content
TL;DR: In this article, the authors present a new pair of precision-recall measures of performance that treat errors of all types uniformly and emphasize correct identification over sources of error, and the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080p, 60fps video taken by 8 cameras observing 2,700 identities over 85 minutes.
Abstract: To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080p, 60fps video taken by 8 cameras observing more than 2,700 identities over 85 minutes; and (iii) a reference software system as a comparison baseline. We show that (i) our measures properly account for bottom-line identity match performance in the multi-camera setting; (ii) our data set poses realistic challenges to current trackers; and (iii) the performance of our system is comparable to the state of the art.

750 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A new kernelized correlation filter is derived, that unlike other kernel algorithms has the exact same complexity as its linear counterpart, which is called dual correlation filter (DCF), which outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite being implemented in a few lines of code.
Abstract: The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies—any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.

4,994 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations