scispace - formally typeset
Search or ask a question
Author

Ritendra Datta

Other affiliations: PARC, Google, Foundation University, Islamabad  ...read more
Bio: Ritendra Datta is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Image retrieval & Automatic image annotation. The author has an hindex of 17, co-authored 32 publications receiving 6740 citations. Previous affiliations of Ritendra Datta include PARC & Google.

Papers
More filters
Journal ArticleDOI
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

3,433 citations

Book ChapterDOI
07 May 2006
TL;DR: This paper treats the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source and extracts certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images.
Abstract: Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty Judging beauty and other aesthetic qualities of photographs is a highly subjective task Hence, there is no unanimously agreed standard for measuring aesthetic value In spite of the lack of firm rules, certain features in photographic images are believed, by many, to please humans more than certain others In this paper, we treat the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source We extract certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images Automated classifiers are built using support vector machines and classification trees Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings The work attempts to explore the relationship between emotions which pictures arouse in people, and their low-level content Potential applications include content-based image retrieval and digital photography

1,008 citations

Journal Article
TL;DR: In this paper, the authors treated the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing website as data source.
Abstract: Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty. Judging beauty and other aesthetic qualities of photographs is a highly subjective task. Hence, there is no unanimously agreed standard for measuring aesthetic value. In spite of the lack of firm rules, certain features in photographic images are believed, by many, to please humans more than certain others. In this paper, we treat the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source. We extract certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. Automated classifiers are built using support vector machines and classification trees. Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings. The work attempts to explore the relationship between emotions which pictures arouse in people, and their low-level content. Potential applications include content-based image retrieval and digital photography.

582 citations

Proceedings ArticleDOI
10 Nov 2005
TL;DR: Some of the key contributions in the current decade related to image retrieval and automated image annotation are discussed, spanning 120 references, and a study on the trends in volume and impact of publications in the field with respect to venues/journals and sub-topics is concluded.
Abstract: The last decade has witnessed great interest in research on content-based image retrieval. This has paved the way for a large number of new techniques and systems, and a growing interest in associated fields to support such systems. Likewise, digital imagery has expanded its horizon in many directions, resulting in an explosion in the volume of image data required to be organized. In this paper, we discuss some of the key contributions in the current decade related to image retrieval and automated image annotation, spanning 120 references. We also discuss some of the key challenges involved in the adaptation of existing image retrieval techniques to build useful systems that can handle real-world data. We conclude with a study on the trends in volume and impact of publications in the field with respect to venues/journals and sub-topics.

500 citations

Journal ArticleDOI
TL;DR: This tutorial defines and discusses key aspects of the problem of computational inference of aesthetics and emotion from images and describes data sets available for performing assessment and outline several real-world applications where research in this domain can be employed.
Abstract: In this tutorial, we define and discuss key aspects of the problem of computational inference of aesthetics and emotion from images. We begin with a background discussion on philosophy, photography, paintings, visual arts, and psychology. This is followed by introduction of a set of key computational problems that the research community has been striving to solve and the computational framework required for solving them. We also describe data sets available for performing assessment and outline several real-world applications where research in this domain can be employed. A significant number of papers that have attempted to solve problems in aesthetics and emotion inference are surveyed in this tutorial. We also discuss future directions that researchers can pursue and make a strong case for seriously attempting to solve problems in this research domain.

361 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 2010
TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Abstract: Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into a system of ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is to find structure in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first published in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, K-means is still widely used. This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous feature selection during data clustering, and large scale data clustering.

6,601 citations

Book ChapterDOI
15 Sep 2008
TL;DR: Cluster analysis as mentioned in this paper is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics, which is one of the most fundamental modes of understanding and learning.
Abstract: The practice of classifying objects according to perceived similarities is the basis for much of science. Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms in to taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes cluster analysis (unsupervised learning) from discriminant analysis (supervised learning). The objective of cluster analysis is to simply find a convenient and valid organization of the data, not to establish rules for separating future data into categories.

4,255 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

3,433 citations

Journal ArticleDOI
TL;DR: From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition and the usefulness of invariance is category-specific.
Abstract: Image category recognition is important to access visual information on the level of objects and scene types. So far, intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks, one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by 7 percent on the Mediamill Challenge.

2,071 citations