scispace - formally typeset
Search or ask a question
Author

Ritva Serimaa

Bio: Ritva Serimaa is an academic researcher from University of Helsinki. The author has contributed to research in topics: Small-angle X-ray scattering & Scattering. The author has an hindex of 46, co-authored 135 publications receiving 6043 citations.


Papers
More filters
Journal ArticleDOI
24 Apr 1998-Science
TL;DR: It was demonstrated that polymeric supramolecular nanostructures with several length scales allow straightforward tailoring of hierarchical order-disorder and order-order transitions and the concurrent switching of functional properties.
Abstract: It was demonstrated that polymeric supramolecular nanostructures with several length scales allow straightforward tailoring of hierarchical order-disorder and order-order transitions and the concurrent switching of functional properties. Poly(4-vinyl pyridine) (P4VP) was stoichiometrically protonated with methane sulfonic acid (MSA) to form P4VP(MSA)1.0, which was then hydrogen-bonded to pentadecylphenol. Microphase separation, re-entrant closed-loop macrophase separation, and high-temperature macrophase separation were observed. When MSA and pentadecylphenol were complexed to the P4VP block of a microphase-separated diblock copolymer poly[styrene-block-(4-vinyl pyridine)], self-organized structures-in-structures were obtained whose hierarchical phase transitions can be controlled systematically. This microstructural control on two different length scales (in the present case, at 48 and 350 angstroms) was then used to introduce temperature-dependent transitions in electrical conductivity.

620 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that polymeric materials characterized by two length scales are obtained if diblock copolymers are mixed with amphiphilic selective solvents, leading to self-organization which combines the "block copolymer length scale" with a much shorter "nanoscale".
Abstract: We show that polymeric materials characterized by two length scales are obtained if diblock copolymers are mixed with amphiphilic selective solvents, leading to self-organization which combines the “block copolymer length scale” with a much shorter “nanoscale”. In this work, the amphiphilic compound is 3-n-pentadecylphenol (PDP) which is hydrogen-bonded to the pyridine group of polystyrene-block-poly(4-vinylpyridine), i.e., PS-b-P4VP. The molecular architecture resembles comb-coil diblock copolymers A-block-(B-graft-C) but is obtained using the supramolecular assembly route. The structures were determined with a combination of transmission electron microscopy and small-angle X-ray scattering. On the block copolymer scale (300 A range), the PS blocks are microphase-separated from the P4VP(PDP)x blocks, where x denotes the ratio between the number of phenol and pyridine groups. For PS-b-P4VP block copolymers having a spherical morphology and P4VP as the minority component, the structure of PS-b-P4VP(PDP)x c...

278 citations

Journal ArticleDOI
TL;DR: It is demonstrated that polymeric self-assembly, reversibility of hydrogen bonding, and polymer–additive phase behaviour allow temperature response in the solid state with large and reversible switching of an optical bandgap.
Abstract: In aqueous solutions the response of polymers and biological matter to external conditions, such as temperature and pH, is typically based on the hydrophobic/hydrophilic balance and its effects on the polymer conformation. In the solid state, related concepts using competing interactions could allow novel functions. In this work we demonstrate that polymeric self-assembly, reversibility of hydrogen bonding, and polymer-additive phase behaviour allow temperature response in the solid state with large and reversible switching of an optical bandgap. A complex of polystyrene-block-poly(4-vinylpyridinium methanesulphonate) and 3-n-pentadecylphenol leads to the supramolecular comb-shaped architecture with a particularly long lamellar period. The sample is green at room temperature, as an incomplete photonic bandgap due to a dielectric reflector is formed. On heating, hydrogen bonds are broken and 3-n-pentadecylphenol additionally becomes soluble in polystyrene, leading to a sharp and reversible transition at approximately 125 degrees C to uncoloured material due to collapse of the long period. This encourages further developments, for example, for functional coatings or sensors in the solid state.

225 citations

Journal ArticleDOI
TL;DR: In this article, the long period of the lamellar structure decreases as x-1 (x is the number of PDP molecules per P4VP repeat unit) in complete contrast to similar polyelectrolyte systems.
Abstract: Properly selected hydrogen bonding suffices to induce mesomorphic structures in mixtures of flexible polymers and nonmesogenic surfactants. For poly(4-vinylpyridine)−3-pentadecylphenol (P4VP(PDP)x) complexes, the long period of the lamellar structure decreases as x-1 (x is the number of PDP molecules per P4VP repeat unit) in complete contrast to similar polyelectrolyte systems. Upon cooling from 80 °C to the room temperature, the long period gradually increases and levels off at around 30 °C at a value which is approximately 4 A above the starting value. After an induction time, a structural transformation occurs in the highly complexed samples, due to the crystallization of the alkyl side chains. It is accompanied by a sudden decrease in the long period of approximately 5 A. However, the structure is not stable and after an additional induction time both structures are present in the samples. Arguments to explain most of the observed phenomena will be given.

221 citations

Journal ArticleDOI
TL;DR: In this paper, X-ray diffraction was used to study variations in the crystallinity of wood and the average thickness and length of the crystallites of cellulose as a function of the number of the year ring in Norway spruce [Picea abies (L.) Karst].
Abstract: X-ray diffraction was used to study variations in the crystallinity of wood and the average thickness and length of the crystallites of cellulose as a function of the number of the year ring in Norway spruce [Picea abies (L.) Karst.]. The crystallinity increased from ring 4 to ring 10 from the pith and was constant after ring 10. The crystallinity of mature wood was about 30% ± 5%. The average thickness and average length of the crystallites were 3.2 ± 0.1 nm and 28 ± 2 nm, respectively; and no systematic variation of these values with the number of the year ring was observed. The mean microfibril angle decreased near the pith but was constant in the mature wood.

217 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.
Abstract: As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.

6,098 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations