scispace - formally typeset
Search or ask a question
Author

Rivka A. Rachel

Other affiliations: Columbia University
Bio: Rivka A. Rachel is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Retina & SCRIB. The author has an hindex of 28, co-authored 42 publications receiving 3726 citations. Previous affiliations of Rivka A. Rachel include Columbia University.
Topics: Retina, SCRIB, Retinal, Cilium, Ciliopathy

Papers
More filters
Journal ArticleDOI
08 May 2003-Nature
TL;DR: A role for the PCP pathway in planar polarization in mammals is demonstrated, and a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene, is shown to results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea.
Abstract: In mammals, an example of planar cell polarity (PCP) is the uniform orientation of the hair cell stereociliary bundles within the cochlea. The PCP pathway of Drosophila refers to a conserved signalling pathway that regulates the coordinated orientation of cells or structures within the plane of an epithelium. Here we show that a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene Strabismus/Van Gogh, results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea as a result of defects in the direction of movement and/or anchoring of the kinocilium within each hair cell. Similar, but less severe, defects are observed in animals containing a mutation in the LAP protein family gene Scrb1 (homologous with Drosophila scribble). Polarization defects in animals heterozygous for Vangl2 and Scrb1 are comparable with Vangl2 homozygotes, demonstrating genetic interactions between these genes in the regulation of PCP in mammals. These results demonstrate a role for the PCP pathway in planar polarization in mammals, and identify Scrb1 as a PCP gene.

704 citations

Journal ArticleDOI
TL;DR: The data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.
Abstract: Planar cell polarity (PCP) is a process in which cells develop with uniform orientation within the plane of an epithelium. To begin to elucidate the mechanisms of PCP in vertebrates, the localization of the protein Vangl2 (Van Gogh-like) was determined during the development of the mammalian cochlea. Results indicate that Vangl2 becomes asymmetrically localized to specific cell-cell boundaries along the axis of polarization and that this asymmetry is lost in PCP mutants. In addition, PDZ2 (postsynaptic density/Discs large/zona occludens 1), PDZ3, and PDZ4 of the PCP protein Scrb1 (Scribble) are shown to bind to the C-terminal PDZ binding domain of Vangl2, suggesting that Scrb1 plays a direct role in asymmetric targeting of Vangl2. Finally, Fz3 (Frizzled), a newly demonstrated mediator of PCP, is also asymmetrically localized in a pattern that matches that of Vangl2. The presence and asymmetry of Fz3 at the membrane is shown to be dependent on Vangl2. This result suggests a role for Vangl2 in the targeting or anchoring of Fz3, a hypothesis strengthened by the existence of a physical interaction between the two proteins. Together, our data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.

330 citations

Journal ArticleDOI
TL;DR: It is shown that Bcl11a is essential for postnatal development and normal lymphopoiesis and may also function as a non-autonomous T cell tumor suppressor gene.
Abstract: Bcl11a (also called Evi9) functions as a myeloid or B cell proto-oncogene in mice and humans, respectively. Here we show that Bcl11a is essential for postnatal development and normal lymphopoiesis. Bcl11a mutant embryos lack B cells and have alterations in several types of T cells. Phenotypic and expression studies show that Bcl11a functions upstream of the transcription factors Ebf1 and Pax5 in the B cell pathway. Transplantation studies show that these defects in Bcl11a mutant mice are intrinsic to fetal liver precursor cells. Mice transplanted with Bcl11a-deficient cells died from T cell leukemia derived from the host. Thus, Bcl11a may also function as a non-autonomous T cell tumor suppressor gene.

310 citations

Journal ArticleDOI
TL;DR: It is shown that Meis1‐deficient embryos have partially duplicated retinas and smaller lenses than normal and may also be required for the proliferation/self‐renewal of the HSC.
Abstract: Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.

300 citations

Journal ArticleDOI
TL;DR: Results indicate that Robos and Slits alone do not directly control RGC axon divergence at the optic chiasm and may additionally function as a general inhibitory guidance system involved in determining the relative position of the optic Chiasm at the ventral midline of the developing hypothalamus.
Abstract: The ventral midline of the nervous system is an important choice point at which growing axons decide whether to cross and project contralaterally or remain on the same side of the brain. In Drosophila, the decision to cross or avoid the CNS midline is controlled, at least in part, by the Roundabout (Robo) receptor on the axons and its ligand, Slit, an inhibitory extracellular matrix molecule secreted by the midline glia. Vertebrate homologs of these molecules have been cloned and have also been implicated in regulating axon guidance. Using in situ hybridization, we have determined the expression patterns of robo1,2 and slit1,2,3 in the mouse retina and in the region of the developing optic chiasm, a ventral midline structure in which retinal ganglion cell (RGC) axons diverge to either side of the brain. The receptors and ligands are expressed at the appropriate time and place, in both the retina and the ventral diencephalon, to be able to influence RGC axon guidance. In vitro, slit2 is inhibitory to RGC axons, with outgrowth of both ipsilaterally and contralaterally projecting axons being strongly affected. Overall, these results indicate that Robos and Slits alone do not directly control RGC axon divergence at the optic chiasm and may additionally function as a general inhibitory guidance system involved in determining the relative position of the optic chiasm at the ventral midline of the developing hypothalamus.

263 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: An inventory of the deubiquitinating enzymes encoded in the human genome is presented and the literature concerning these enzymes is reviewed, with particular emphasis on their function, specificity, and the regulation of their activity.

1,691 citations

Journal ArticleDOI
TL;DR: The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction, and the cilium represents a nexus for signalling pathways during development.
Abstract: The primary cilium has recently stepped into the spotlight, as a flood of data show that this organelle has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for hedgehog signal transduction. The formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The cilium therefore represents a nexus for signalling pathways during development. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction.

1,669 citations

Journal ArticleDOI
06 Dec 2002-Science
TL;DR: This work has shown that a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring through signaling pathways still only poorly understood.
Abstract: Axons are guided along specific pathways by attractive and repulsive cues in the extracellular environment. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer axons by regulating cytoskeletal dynamics in the growth cone through signaling pathways that are still only poorly understood. Elaborate regulatory mechanisms ensure that a given cue elicits the right response from the right axons at the right time but is otherwise ignored. With such regulatory mechanisms in place, a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring.

1,335 citations

Journal ArticleDOI
TL;DR: Recent developments in both the functions and mechanisms of noncanonical Wnt signaling are reviewed, and some challenges and difficulties the field faces are outlined.

1,312 citations