scispace - formally typeset
R

Rob Ivison

Researcher at European Southern Observatory

Publications -  1178
Citations -  107956

Rob Ivison is an academic researcher from European Southern Observatory. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 166, co-authored 1161 publications receiving 102314 citations. Previous affiliations of Rob Ivison include Durham University & University of Edinburgh.

Papers
More filters
Journal ArticleDOI

The Herschel-SPIRE instrument and its in-flight performance

Matthew Joseph Griffin, +189 more
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Journal ArticleDOI

The Herschel-SPIRE instrument and its in-flight performance

TL;DR: The Spectral and Photometric Imaging Receiver (SPIRE) as discussed by the authors is the Herschel Space Observatory's submillimetre camera and spectrometer, which is used for scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas.
Journal ArticleDOI

A Redshift Survey of the Submillimeter Galaxy Population

Abstract: We have obtained spectroscopic redshifts using the Keck I telescope for a sample of 73 submillimeter galaxies (SMGs), with a median 850 μm flux density of 5.7 mJy, for which precise positions are available through their faint radio emission. The galaxies lie at redshifts out to z = 3.6, with a median redshift of 2.2 and an interquartile range z = 1.7-2.8. Modeling a purely submillimeter flux-limited sample, based on the expected selection function for our radio-identified sample, suggests a median redshift of 2.3, with a redshift distribution remarkably similar to the optically and radio-selected quasars. The observed redshift distributions are similar for the active galactic nucleus (AGN) and starburst subsamples. The median RAB is 24.6 for the sample. However, the dust-corrected ultraviolet (UV) luminosities of the galaxies rarely hint at the huge bolometric luminosities indicated by their radio/submillimeter emission, with the effect that the true luminosity can be underestimated by a median factor of ~120 for SMGs with pure starburst spectra. Radio and submillimeter observations are thus essential to select the most luminous high-redshift galaxies. The 850 μm, radio, and redshift data are used to estimate the dust temperatures and characterize photometric redshifts. Using 450 μm measurements for a subset of our sample, we confirm that a median dust temperature of Td = 36 ± 7 K, derived on the assumption that the local far-infrared (FIR)-radio correlation applies at high redshift, is reasonable. Individual 450 μm detections are consistent with the local radio-FIR relation holding at z ~ 2. This median Td is lower than that estimated for similarly luminous IRAS 60 μm galaxies locally. We demonstrate that dust temperature variations make it impossible to estimate redshifts for individual SGMs to better than Δz 1 using simple long-wavelength photometric methods. We calculate total infrared and bolometric luminosities (the median infrared luminosity estimated from the radio is 8.5 × 1012 L☉), construct a luminosity function, and quantify the strong evolution of the submillimeter population across z = 0.5-3.5 relative to local IRAS galaxies. We use the bolometric luminosities and UV-spectral classifications to determine a lower limit to the AGN content of the population and measure directly the varying the contribution of highly obscured, luminous galaxies to the luminosity density history of the universe for the first time. We conclude that bright submillimeter galaxies contribute a comparable star formation density to Lyman break galaxies at z = 2-3, and including galaxies below our submillimeter flux limit, this population may be the dominant site of massive star formation at this epoch. The rapid evolution of SMGs and QSO populations contrasts with that seen in bolometrically lower luminosity galaxy samples selected in the rest-frame UV and suggests a close link between SMGs and the formation and evolution of the galactic halos that host QSOs.
Journal ArticleDOI

High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey

TL;DR: In this article, a deep sub-millimetre-wavelength survey of the Hubble Deep Field was conducted, and the combined radiation of the five most significant detections accounts for 30-50 per cent of the previously unresolved background emission in this area.
Journal ArticleDOI

GOODS–Herschel: an infrared main sequence for star-forming galaxies

David Elbaz, +57 more
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.