scispace - formally typeset
Search or ask a question
Author

Rob Knight

Bio: Rob Knight is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Microbiome & Gut flora. The author has an hindex of 201, co-authored 1061 publications receiving 253207 citations. Previous affiliations of Rob Knight include Anschutz Medical Campus & University of Sydney.
Topics: Microbiome, Gut flora, Medicine, Metagenomics, Biology


Papers
More filters
Posted ContentDOI
15 Oct 2019-bioRxiv
TL;DR: The oral microbiome and a panel of 38 host markers was analyzed across the saliva from 23 children with dentin caries and 24 children with healthy dentition, and 527 metagenome-assembled genomes were obtained, representing 151 species.
Abstract: Dental caries is the most common chronic infectious disease globally. The microbial communities associated with caries have mainly been examined using relatively low-resolution 16S rRNA gene amplicon sequencing and/or using downstream analyses that are unsound for the compositional nature of the data provided by sequencing. Additionally, the relationship between caries, oral microbiome composition, and host immunological markers has not been explored. In this study, the oral microbiome and a panel of 38 host markers was analyzed across the saliva from 23 children with dentin caries and 24 children with healthy dentition. Metagenomic sequencing, followed by investigation using tools designed to be robust for compositional data, illustrated that several Prevotella spp. were prevalent in caries, while Rothia spp. were associated with the health. The contributional diversity (extent to which multiple taxa contribute to each pathway) of functional pathways present in the oral microbiome was decreased in the caries group. This decrease was especially noticeable in several pathways known to impede caries pathogenesis, including arginine and branched-chain amino acid biosynthesis. 10 host immunological markers were found to be significantly elevated in the saliva of the caries group, and microbe-metabolite co-occurrence analysis provided an atlas of relationships contributing to the bi-directional influence between the oral microbiome and the host immune system. Finally, 527 metagenome-assembled genomes were obtained from the metagenomics data, representing 151 species. 23 taxa were novel genera/species and a further 20 taxa were novel species. This study thus serves as a model analysis pipeline that will tremendously expand our knowledge of the oral microbiome and its relationship to dental caries once applied to large populations.

38 citations

Journal ArticleDOI
24 Dec 2019-Mbio
TL;DR: The analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes.
Abstract: Ciliates, a eukaryotic clade that is over 1 billion years old, are defined by division of genome function between transcriptionally inactive germline micronuclei and functional somatic macronuclei. To date, most analyses of gene family evolution have been limited to cultivable model lineages (e.g., Tetrahymena, Paramecium, Oxytricha, and Stylonychia). Here, we focus on the uncultivable Karyorelictea and its understudied sister class Heterotrichea, which represent two extremes in genome architecture. Somatic macronuclei within the Karyorelictea are described as nearly diploid, while the Heterotrichea have hyperpolyploid somatic genomes. Previous analyses indicate that genome architecture impacts ciliate gene family evolution as the most diverse and largest gene families are found in lineages with extensively processed somatic genomes (i.e., possessing thousands of gene-sized chromosomes). To further assess ciliate gene family evolution, we analyzed 43 single-cell transcriptomes from 33 ciliate species representing 10 classes. Focusing on conserved eukaryotic genes, we use estimates of transcript diversity as a proxy for the number of paralogs in gene families among four focal clades: Karyorelictea, Heterotrichea, extensive fragmenters (with gene-size somatic chromosomes), and non-extensive fragmenters (with more traditional somatic chromosomes), the latter two within the subphylum Intramacronucleata. Our results show that (i) the Karyorelictea have the lowest average transcript diversity, while Heterotrichea are highest among the four groups; (ii) proteins in Karyorelictea are under the highest functional constraints, and the patterns of selection in ciliates may reflect genome architecture; and (iii) stop codon reassignments vary among members of the Heterotrichea and Spirotrichea but are conserved in other classes.IMPORTANCE To further our understanding of genome evolution in eukaryotes, we assess the relationship between patterns of molecular evolution within gene families and variable genome structures found among ciliates. We combine single-cell transcriptomics with bioinformatic tools, focusing on understudied and uncultivable lineages selected from across the ciliate tree of life. Our analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes. This study showcases the power of single-cell transcriptomics for investigating genome architecture and evolution in uncultivable microbial lineages and provides transcriptomic resources for further research on genome evolution.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland and reported robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up.
Abstract: The collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.

36 citations

Journal ArticleDOI
01 Apr 2010-RNA
TL;DR: Seven new arginine binding motifs have been selected from a heterogeneous RNA pool containing 17, 25, and 50mer randomized tracts, yielding 131 independently derived binding sites that are multiply isolated.
Abstract: Seven new arginine binding motifs have been selected from a heterogeneous RNA pool containing 17, 25, and 50mer randomized tracts, yielding 131 independently derived binding sites that are multiply isolated. The shortest 17mer random region is sufficient to build varied arginine binding sites using five different conserved motifs (motifs 1a, 1b, 1c, 2, and 4). Dissociation constants are in the fractional millimolar to millimolar range. Binding sites are amino acid side-chain specific and discriminate moderately between L- and D-stereoisomers of arginine, suggesting a molecular focus on side-chain guanidinium. An arginine coding triplet (codon/anticodon) is highly conserved within the largest family of Arg sites (72% of all sequences), as has also been found in minimal, most prevalent RNA binding sites for Ile, His, and Trp.

36 citations

Journal ArticleDOI
01 Jul 2011-RNA
TL;DR: A standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs, is developed and a schema for sharing nucleic acids chemical probing data is proposed that uses generic public servers for storing, retrieving, and searching the data.
Abstract: Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http:// snrnasm.bio.unc.edu.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the analysis pipeline and links to raw data and processed output from the runs with and without denoising are provided.
Abstract: Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.

28,911 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

Journal ArticleDOI
TL;DR: M mothur is used as a case study to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the α and β diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments.
Abstract: mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.

17,350 citations

Journal ArticleDOI
TL;DR: UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters and offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets.
Abstract: Motivation: Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. Results: UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Availability: Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

17,301 citations