scispace - formally typeset
Search or ask a question
Author

Rob Knight

Bio: Rob Knight is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Microbiome & Gut flora. The author has an hindex of 201, co-authored 1061 publications receiving 253207 citations. Previous affiliations of Rob Knight include Anschutz Medical Campus & University of Sydney.
Topics: Microbiome, Gut flora, Medicine, Metagenomics, Biology


Papers
More filters
Journal ArticleDOI
TL;DR: A reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, is built, providing an updated view of domain-level relationships between Archaea and Bacteria.
Abstract: Rapid growth of genome data provides opportunities for updating microbial evolutionary relationships, but this is challenged by the discordant evolution of individual genes. Here we build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that were limited to fewer "core" genes, such as the ribosomal proteins. The robustness of the results was tested with respect to several variables, including taxon and site sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.

184 citations

Journal ArticleDOI
TL;DR: The Microbiome Quality Control project (MBQC) was initiated to identify sources of variation in microbiome studies, to quantify their magnitudes, and to assess the design and utility of different positive and negative control strategies.
Abstract: Microbiome research has grown exponentially over the past several years, but studies have been difficult to reproduce across investigations. Relevant variation in measurements between laboratories, from a variety of sources, has not been systematically assessed. This is coupled with a growing concern in the scientific community about the lack of reproducibility in biomedical research. The Microbiome Quality Control project (MBQC) was initiated to identify sources of variation in microbiome studies, to quantify their magnitudes, and to assess the design and utility of different positive and negative control strategies. Here we report on the first MBQC baseline study project and workshop.

182 citations

Posted ContentDOI
11 Apr 2018-bioRxiv
TL;DR: A novel algorithm for automatic parameterization of neural power spectral densities (PSDs) as a combination of the aperiodic signal and putative periodic oscillations is introduced, requiring no a priori specification of band limits and accounts for potentially-overlapping oscillations while minimizing the degree to which they are confounded with one another.
Abstract: Electrophysiological signals across species and recording scales exhibit both periodic and aperiodic features. Periodic oscillations have been widely studied and linked to numerous physiological, cognitive, behavioral, and disease states, while the aperiodic "background" 1/f component of neural power spectra has received far less attention. Most analyses of oscillations are conducted on a priori, canonically-defined frequency bands without consideration of the underlying aperiodic structure, or verification that a periodic signal even exists in addition to the aperiodic signal. This is problematic, as recent evidence shows that the aperiodic signal is dynamic, changing with age, task demands, and cognitive state. It has also been linked to the relative excitation/inhibition of the underlying neuronal population. This means that standard analytic approaches easily conflate changes in the periodic and aperiodic signals with one another because the aperiodic parameters--along with oscillation center frequency, power, and bandwidth--are all dynamic in physiologically meaningful, but likely different, ways. In order to overcome the limitations of traditional narrowband analyses and to reduce the potentially deleterious effects of conflating these features, we introduce a novel algorithm for automatic parameterization of neural power spectral densities (PSDs) as a combination of the aperiodic signal and putative periodic oscillations. Notably, this algorithm requires no a priori specification of band limits and accounts for potentially-overlapping oscillations while minimizing the degree to which they are confounded with one another. This algorithm is amenable to large-scale data exploration and analysis, providing researchers with a tool to quickly and accurately parameterize neural power spectra.

180 citations

Journal ArticleDOI
30 Oct 2015-Science
TL;DR: The Unified Microbiome Initiative (UMI) as mentioned in this paper proposes an interdisciplinary approach to discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems, which can transform our understanding of the world and launch innovations in agriculture, energy, health, and environment.
Abstract: Despite their centrality to life on Earth, we know little about how microbes (1) interact with each other, their hosts, or their environment. Although DNA sequencing technologies have enabled a new view of the ubiquity and diversity of microorganisms, this has mainly yielded snapshots that shed limited light on microbial functions or community dynamics. Given that nearly every habitat and organism hosts a diverse constellation of microorganisms—its “microbiome”—such knowledge could transform our understanding of the world and launch innovations in agriculture, energy, health, the environment, and more (see the photo). We propose an interdisciplinary Unified Microbiome Initiative (UMI) to discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems. The impacts of oceans and soil microbes on atmospheric CO_2 are critical for understanding climate change (2). By manipulating interactions at the root-soil-microbe interface, we may reduce agricultural pesticide, fertilizer, and water use enrich marginal land and rehabilitate degraded soils. Microbes can degrade plant cell walls (for biofuels), and synthesize myriad small molecules for new bioproducts, including antibiotics (3). Restoring normal human microbial ecosystems can save lives [e.g., fecal microbiome transplantation for Clostridium difficile infections (4)]. Rational management of microbial communities in and around us has implications for asthma, diabetes, obesity, infectious diseases, psychiatric illnesses, and other afflictions (5, 6). The human microbiome is a target and a source for new drugs (7) and an essential tool for precision medicine (8).

180 citations

Journal ArticleDOI
TL;DR: This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge- associated rare biosphere.
Abstract: Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the analysis pipeline and links to raw data and processed output from the runs with and without denoising are provided.
Abstract: Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.

28,911 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

Journal ArticleDOI
TL;DR: M mothur is used as a case study to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the α and β diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments.
Abstract: mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.

17,350 citations

Journal ArticleDOI
TL;DR: UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters and offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets.
Abstract: Motivation: Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. Results: UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Availability: Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

17,301 citations