scispace - formally typeset
Search or ask a question
Author

Rob Knight

Bio: Rob Knight is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Microbiome & Gut flora. The author has an hindex of 201, co-authored 1061 publications receiving 253207 citations. Previous affiliations of Rob Knight include Anschutz Medical Campus & University of Sydney.
Topics: Microbiome, Gut flora, Medicine, Metagenomics, Biology


Papers
More filters
Journal ArticleDOI
Barbara A. Methé1, Karen E. Nelson1, Mihai Pop2, Heather Huot Creasy3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomics data available to the scientific community as mentioned in this paper.
Abstract: A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.

2,172 citations

Journal ArticleDOI
TL;DR: This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.
Abstract: The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate life events to microbiome composition and function. Sixty fecal samples were collected from a healthy infant along with a diary of diet and health status. Analysis of >300,000 16S rRNA genes indicated that the phylogenetic diversity of the microbiome increased gradually over time and that changes in community composition conformed to a smooth temporal gradient. In contrast, major taxonomic groups showed abrupt shifts in abundance corresponding to changes in diet or health. Community assembly was nonrandom: we observed discrete steps of bacterial succession punctuated by life events. Furthermore, analysis of ≈500,000 DNA metagenomic reads from 12 fecal samples revealed that the earliest microbiome was enriched in genes facilitating lactate utilization, and that functional genes involved in plant polysaccharide metabolism were present before the introduction of solid food, priming the infant gut for an adult diet. However, ingestion of table foods caused a sustained increase in the abundance of Bacteroidetes, elevated fecal short chain fatty acid levels, enrichment of genes associated with carbohydrate utilization, vitamin biosynthesis, and xenobiotic degradation, and a more stable community composition, all of which are characteristic of the adult microbiome. This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.

2,038 citations

Journal ArticleDOI
TL;DR: It is confirmed with actual sequence data that UniFrac values can be influenced by the number of sequences/sample, and sequence jackknifing is recommended to avoid this issue.
Abstract: UniFrac is a β-diversity measure that uses phylogenetic information to compare environmental samples. UniFrac, coupled with standard multivariate statistical techniques including principal coordinates analysis (PCoA), identifies factors explaining differences among microbial communities. A recent simulation study concluded that UniFrac is unsuitable as a distance metric and should not be used for multivariate analysis (Schloss, 2008). We counter this argument by reassessing the data that led to this conclusion and by providing a mathematical proof showing that UniFrac is a distance metric. However, we confirm with actual sequence data that UniFrac values can be influenced by the number of sequences/sample, and recommend sequence jackknifing (that is, determining how often the cluster results are recovered using random subsets of the data) to avoid this issue.

2,022 citations

Journal ArticleDOI
TL;DR: It is shown that applying qualitative and quantitative measures to the same data set can lead to dramatically different conclusions about the main factors that structure microbial diversity and can provide insight into the nature of community differences.
Abstract: The assessment of microbial diversity and distribution is a major concern in environmental microbiology. There are two general approaches for measuring community diversity: quantitative measures, which use the abundance of each taxon, and qualitative measures, which use only the presence/absence of data. Quantitative measures are ideally suited to revealing community differences that are due to changes in relative taxon abundance (e.g., when a particular set of taxa flourish because a limiting nutrient source becomes abundant). Qualitative measures are most informative when communities differ primarily by what can live in them (e.g., at high temperatures), in part because abundance information can obscure significant patterns of variation in which taxa are present. We illustrate these principles using two 16S rRNA-based surveys of microbial populations and two phylogenetic measures of community β diversity: unweighted UniFrac, a qualitative measure, and weighted UniFrac, a new quantitative measure, which we have added to the UniFrac website (http://bmf.colorado.edu/unifrac). These studies considered the relative influences of mineral chemistry, temperature, and geography on microbial community composition in acidic thermal springs in Yellowstone National Park and the influences of obesity and kinship on microbial community composition in the mouse gut. We show that applying qualitative and quantitative measures to the same data set can lead to dramatically different conclusions about the main factors that structure microbial diversity and can provide insight into the nature of community differences. We also demonstrate that both weighted and unweighted UniFrac measurements are robust to the methods used to build the underlying phylogeny.

1,927 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the analysis pipeline and links to raw data and processed output from the runs with and without denoising are provided.
Abstract: Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.

28,911 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

Journal ArticleDOI
TL;DR: M mothur is used as a case study to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the α and β diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments.
Abstract: mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.

17,350 citations

Journal ArticleDOI
TL;DR: UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters and offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets.
Abstract: Motivation: Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. Results: UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Availability: Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

17,301 citations