scispace - formally typeset
Search or ask a question
Author

Robby Peibst

Other affiliations: Technische Universität Ilmenau
Bio: Robby Peibst is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Passivation & Silicon. The author has an hindex of 28, co-authored 130 publications receiving 2811 citations. Previous affiliations of Robby Peibst include Technische Universität Ilmenau.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate damage-free laser contact openings in silicon oxide layers on polycrystalline silicon on oxide (POLO) passivating contacts with a pulsed UV-laser.

440 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the future developments in the field of c-Si solar cells based on carrier-selective passivation layers and compare combinations of the various options of carrierselective layers concerning their combined selectivities and efficiency potentials.

228 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the electrical properties of poly-crystalline (poly) Si/mono-c-Si junctions and the influence of the interfacial oxide between the poly-Si and the c-Si on these characteristics.

187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an alternative picture, essentially based on a localized current flow through the interfacial oxide, mediated either by local reduction of the oxide layer thickness or by pinholes.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells are reviewed.
Abstract: All highly-efficient organic–inorganic halide perovskite (OIHP) solar cells to date are made of polycrystalline perovskite films which contain a high density of defects, including point and extended imperfections. The imperfections in OIHP materials play an important role in the process of charge recombination and ion migration in perovskite solar cells (PSC), which heavily influences the resulting device energy conversion efficiency and stability. Here we review the recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells. Due to the ionic nature of OIHP materials, the defects in the photoactive films are inevitably electrically charged. The deep level traps induced by particular charged defects in OIHP films are major non-radiative recombination centers; passivation by coordinate bonding, ionic bonding, or chemical conversion have proven effective in mitigating the negative impacts of these deep traps. Shallow level charge traps themselves may contribute little to non-radiative recombination, but the migration of charged shallow level traps in OIHP films results in unfavorable band bending, interfacial reactions, and phase segregation, influencing the carrier extraction efficiency. Finally, the impact of defects and ion migration on the stability of perovskite solar cells is described.

1,040 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective and give an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrierselective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic-inorganic perovskite materials.
Abstract: With a global market share of about 90%, crystalline silicon is by far the most important photovoltaic technology today. This article reviews the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective. First, it discusses key factors responsible for the success of the classic dopant-diffused silicon homojunction solar cell. Next it analyzes two archetypal high-efficiency device architectures – the interdigitated back-contact silicon cell and the silicon heterojunction cell – both of which have demonstrated power conversion efficiencies greater than 25%. Last, it gives an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrier-selective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic–inorganic perovskite materials.

751 citations