scispace - formally typeset
Search or ask a question
Author

Robert A. Berner

Other affiliations: University of Chicago
Bio: Robert A. Berner is an academic researcher from Yale University. The author has contributed to research in topics: Weathering & Organic matter. The author has an hindex of 110, co-authored 209 publications receiving 47787 citations. Previous affiliations of Robert A. Berner include University of Chicago.


Papers
More filters
Book
01 Jan 1980
TL;DR: In this article, Berner developed the mathematical theory of early diagenesis, introducing a general diagenetic equation and discussing it in terms of each major diagenetics process, including diffusion, compaction, pore-water flow, burial advection, bioturbation, adsorption, radioactive decay and especially chemical and biochemical reactions.
Abstract: Diagenesis refers to changes taking place in sediments after deposition. In a theoretical treatment of early diagenesis, Robert Berner shows how a rigorous development of the mathematical modeling of diagenetic processes can be useful to the understanding and interpretation of both experimental and field observations. His book is unique in that the models are based on quantitative rate expressions, in contrast to the qualitative descriptions that have dominated the field. In the opening chapters, the author develops the mathematical theory of early diagenesis, introducing a general diagenetic equation and discussing it in terms of each major diagenetic process. Included are the derivations of basic rate equations for diffusion, compaction, pore-water flow, burial advection, bioturbation, adsorption, radioactive decay, and especially chemical and biochemical reactions. Drawing on examples from the recent literature on continental-margin, pelagic, and non-marine sediments, he then illustrates the power of these diagenetic models in the study of such deposits. The book is intended not only for earth scientists studying sediments and sedimentary rocks, but also for researchers in fields such as radioactive waste disposal, petroleum and economic geology, environmental pollution, and sea-floor engineering.

2,849 citations

Journal ArticleDOI
Robert A. Berner1
TL;DR: In this article, it was shown that organic matter appears to be the major control on pyrite formation in normal (non-euxinic) terrigenous marine sediments where dissolved sulfate and iron minerals are abundant.

2,234 citations

Journal ArticleDOI
TL;DR: In this article, a computer model has been constructed that considers the effects on the CO/sub 2/ level of the atmosphere, and the Ca, Mg, and HCO/sub 3/ levels of the ocean, of the following processes: weathering on the continents of calcite, dolomite, and calcium-and-magnesium-containing silicates; biogenic precipitation and removal of CaCO 3/from the ocean; removal of Mg from the ocean via volcanic-seawater reaction; and the metamorphic-magmatic decarbon
Abstract: A computer model has been constructed that considers the effects on the CO/sub 2/ level of the atmosphere, and the Ca, Mg, and HCO/sub 3/ levels of the ocean, of the following processes: weathering on the continents of calcite, dolomite, and calcium-and-magnesium-containing silicates; biogenic precipitation and removal of CaCO/sub 3/ from the ocean; removal of Mg from the ocean via volcanic-seawater reaction; and the metamorphic-magmatic decarbonation of calcite and dolomite (and resulting CO/sub 2/ degassing) as a consequence of plate subduction. Assuming steady state, values for fluxes to and from the atmosphere and oceans are first derived for the modern ocean-atmosphere system. Then the consequences of perturbing steady state are examined by deriving rate expressions for all transfer reactions. These rate expressions are constructed so as to reflect changes over the past 100 my. Results indicate that the CO/sub 2/ content of the atmosphere is highly sensitive to changes in seafloor spreading rate and continental land area, and, to a much lesser extent, to changes in the relative masses of calcite and dolomite. Consideration of a number of alternative seafloor spreading rate formulations shows that in all cases a several-fold higher CO/sub 2/ level for the Cretaceous atmosphere (65-100 mymore » BP) is obtained via the model. Assuming that CO/sub 2/ level and surface air temperature are positively correlated via an atmospheric greenhouse model, they authors predict Cretaceous paleotemperatures which are in rough general agreement with independent published data. Consequently, their results point to plate tectonics, as it affects both metamorphic-magmatic decarbonation and changes in continental land area, as a major control of world climate.« less

2,003 citations

Journal ArticleDOI
TL;DR: In this article, the GEOCARB model has been updated with an emphasis on factors affecting CO2 uptake by continental weathering, including the role of plants in chemical weathering and the application of GCMs to study the long-term carbon cycle.
Abstract: Revision of the GEOCARB model (Berner, 1991, 1994) for paleolevels of atmospheric CO2, has been made with emphasis on factors affecting CO2 uptake by continental weathering. This includes: (1) new GCM (general circulation model) results for the dependence of global mean surface temperature and runoff on CO2, for both glaciated and non-glaciated periods, coupled with new results for the temperature response to changes in solar radiation; (2) demonstration that values for the weathering-uplift factor fR(t) based on Sr isotopes as was done in GEOCARB II are in general agreement with independent values calculated from the abundance of terrigenous sediments as a measure of global physical erosion rate over Phanerozoic time; (3) more accurate estimates of the timing and the quantitative effects on Ca-Mg silicate weathering of the rise of large vascular plants on the continents during the Devonian; (4) inclusion of the effects of changes in paleogeography alone (constant CO2 and solar radiation) on global mean land surface temperature as it affects the rate of weathering; (5) consideration of the effects of volcanic weathering, both in subduction zones and on the seafloor; (6) use of new data on the d 13 C values for Phanerozoic limestones and organic matter; (7) consideration of the relative weather- ing enhancement by gymnosperms versus angiosperms; (8) revision of paleo land area based on more recent data and use of this data, along with GCM-based paleo-runoff results, to calculate global water discharge from the continents over time. Results show a similar overall pattern to those for GEOCARB II: very high CO2 values during the early Paleozoic, a large drop during the Devonian and Carbonifer- ous, high values during the early Mesozoic, and a gradual decrease from about 170 Ma to low values during the Cenozoic. However, the new results exhibit considerably higher CO2 values during the Mesozoic, and their downward trend with time agrees with the independent estimates of Ekart and others (1999). Sensitivity analysis shows that results for paleo-CO2 are especially sensitive to: the effects of CO2 fertilization and temperature on the acceleration of plant-mediated chemical weathering; the quantitative effects of plants on mineral dissolution rate for constant temperature and CO2; the relative roles of angiosperms and gymnosperms in accelerating rock weather- ing; and the response of paleo-temperature to the global climate model used. This emphasizes the need for further study of the role of plants in chemical weathering and the application of GCMs to study of paleo-CO2 and the long term carbon cycle.

1,842 citations

Journal ArticleDOI
TL;DR: In this paper, the major stages of formation (bacterial sulfate reduction, formation of Fe monosulfides by reaction of H 2 S with Fe minerals, pyrite formation, reaction of Fe mono-sulfides with elemental sulfur), limiting factors, coastal sediments of central Connecticut
Abstract: Major stages of formation (bacterial sulfate reduction, formation of Fe monosulfides by reaction of H 2 S with Fe minerals, pyrite formation by reaction of Fe monosulfides with elemental sulfur), limiting factors, coastal sediments of central Connecticut

1,618 citations


Cited by
More filters
Journal ArticleDOI
27 Apr 2001-Science
TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Abstract: Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

8,903 citations

Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
TL;DR: The scale of the problem in terms of population exposed to high As concentrations is greatest in the Bengal Basin with more than 40 million people drinking water containing ‘excessive’ As as mentioned in this paper.

6,741 citations

Book
01 Jun 1989
TL;DR: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities.
Abstract: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater. The ways in which solutes are taken up or precipitated and the amounts present in solution are influenced by many environmental factors, especially climate, structure and position of rock strata, and biochemical effects associated with life cycles of plants and animals, both microscopic and macroscopic. Taken together and in application with the further influence of the general circulation of all water in the hydrologic cycle, the chemical principles and environmental factors form a basis for the developing science of natural-water chemistry. Fundamental data used in the determination of water quality are obtained by the chemical analysis of water samples in the laboratory or onsite sensing of chemical properties in the field. Sampling is complicated by changes in the composition of moving water and by the effects of particulate suspended material. Some constituents are unstable and require onsite determination or sample preservation. Most of the constituents determined are reported in gravimetric units, usually milligrams per liter or milliequivalents

6,271 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations