scispace - formally typeset
Search or ask a question
Author

Robert A. Holland

Bio: Robert A. Holland is an academic researcher from University of Southampton. The author has contributed to research in topics: Ecosystem services & Biodiversity. The author has an hindex of 17, co-authored 33 publications receiving 1706 citations. Previous affiliations of Robert A. Holland include International Union for Conservation of Nature and Natural Resources & University of Sheffield.

Papers
More filters
Journal ArticleDOI
12 Jun 2013-PLOS ONE
TL;DR: This study presents a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity, and finds that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species.
Abstract: Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11– 15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and areaspecific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.

722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors utilize the most comprehensive assessment of freshwater biodiversity for an entire continent to examine the implications of this shortfall and find that the groups that have been the focus of most conservation research are poor surrogates for patterns of both richness and threat for many freshwater groups, and the existing protected area network underrepresents freshwater species.
Abstract: Human population growth and economic development threaten the integrity of freshwater ecosystems globally, reducing their ability to support biodiversity and provide ecosystem services. However, our knowledge of freshwater biodiversity is fragmented due to bias in conservation research toward primarily terrestrial or charismatic taxonomic groups. Here, we utilize the most comprehensive assessment of freshwater biodiversity for an entire continent to examine the implications of this shortfall. Results indicate that groups that have been the focus of most conservation research are poor surrogates for patterns of both richness and threat for many freshwater groups, and that the existing protected area network underrepresents freshwater species. Areas of highest species richness and threat are congruent with areas where reliance on ecosystem services by humans and pressures placed on freshwater ecosystems are high. These results have implications for targets to reduce biodiversity loss and safeguard associated ecosystem services on which millions of people depend globally.

161 citations

Book
01 Jan 2011
TL;DR: In this paper, the authors present the most up-to-date information on the distributions and conservation status of species in all inland water ecosystems across mainland continental Africa and the reasons behind their declining status.
Abstract: This volume gives the most up-to-date information on the distributions and conservation status of species in all inland water ecosystems across mainland continental Africa and the reasons behind their declining status. This represents the most comprehensive assessment yet of freshwater biodiversity at the species level for an entire continent. For managers, this information will assist in designing and delivering targeted action to mitigate and minimise these threats. From a policy perspective, this information is fundamental to meeting national obligations under the Convention on Biological Diversity (CBD), the Ramsar Convention, and the Millennium Development Goals (MDGs), and will input to national-level conservation priority setting.

148 citations

Journal ArticleDOI
TL;DR: It is found that species richness and endemism patterns are significantly correlated among taxa and that aquatic amphibians appear to be a good 'surrogate' candidate for developing global freshwater conservation planning at the river drainage basin grain.
Abstract: Whereas global patterns and predictors of species diversity are well known for numerous terrestrial taxa, our understanding of freshwater diversity patterns and their predictors is much more limited. Here, we examine spatial concordance in global diversity patterns for five freshwater taxa (i.e. aquatic mammals, aquatic birds, fishes, crayfish and aquatic amphibians) and investigate the environmental factors driving these patterns at the river drainage basin grain. We find that species richness and endemism patterns are significantly correlated among taxa. We also show that cross-taxon congruence patterns are often induced by common responses of taxa to their contemporary and historical environments (i.e. convergent patterns). Apart from some taxa distinctiveness (i.e. fishes), the ‘climate/productivity’ hypothesis is found to explain the greatest variance in species richness and endemism patterns, followed by factors related to the ‘history/dispersion’ and ‘area/environmental heterogeneity’ hypotheses. As aquatic amphibians display the highest levels of congruency with other taxa, this taxon appears to be a good ‘surrogate’ candidate for developing global freshwater conservation planning at the river drainage basin grain.

108 citations

Journal ArticleDOI
TL;DR: Conordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally is revealed, highlighting the need to consider the full range of consequences of energy production when designing policy.
Abstract: The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

97 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

01 Jan 1944
TL;DR: The only previously known species of Myrsidea from bulbuls, M. warwicki ex Ixos philippinus, is redescribed and sixteen new species are described; they and their type hosts are described.
Abstract: We redescribe the only previously known species of Myrsidea from bulbuls, M. pycnonoti Eichler. Sixteen new species are described; they and their type hosts are: M. phillipsi ex Pycnonotus goiavier goiavier (Scopoli), M. gieferi ex P. goiavier suluensis Mearns, M. kulpai ex P. flavescens Blyth, M. finlaysoni ex P. finlaysoni Strickland, M. kathleenae ex P. cafer (L.), M. warwicki ex Ixos philippinus (J. R. Forster), M. mcclurei ex Microscelis amaurotis (Temminck), M. zeylanici ex P. zeylanicus (Gmelin), M. plumosi ex P. plumosus Blyth, M. eutiloti ex P. eutilotus (Jardine and Selby), M. adamsae ex P. urostictus (Salvadori), M. ochracei ex Criniger ochraceus F. Moore, M. borbonici ex Hypsipetes borbonicus (J. R. Forster), M. johnsoni ex P. atriceps (Temminck), M. palmai ex C. ochraceus, and M. claytoni ex P. eutilotus. A key is provided for the identification of these 17 species.

1,756 citations

Journal ArticleDOI
01 May 2015-Science
TL;DR: Estimating a global mean extinction rate was synthesized in order to determine which factors contribute the greatest uncertainty to climate change–induced extinction risks and suggest that extinction risks will accelerate with future global temperatures.
Abstract: Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change–induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.

1,472 citations