scispace - formally typeset
Search or ask a question
Author

Robert A. Kropfli

Bio: Robert A. Kropfli is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Radar & Doppler radar. The author has an hindex of 21, co-authored 51 publications receiving 1690 citations.
Topics: Radar, Doppler radar, Cirrus, Ice cloud, Cloud physics


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a millimeter-wave cloud radar (MMCR) was designed to provide detailed, long-term observations of nonprecipitating and weakly precipitating clouds at Cloud and Radiation Testbed (CART) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) program.
Abstract: A new millimeter-wave cloud radar (MMCR) has been designed to provide detailed, long-term observations of nonprecipitating and weakly precipitating clouds at Cloud and Radiation Testbed (CART) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) program. Scientific requirements included excellent sensitivity and vertical resolution to detect weak and thin multiple layers of ice and liquid water clouds over the sites and long-term, unattended operations in remote locales. In response to these requirements, the innovative radar design features a vertically pointing, single-polarization, Doppler system operating at 35 GHz (Ka band). It uses a low-peak-power transmitter for long-term reliability and high-gain antenna and pulse-compressed waveforms to maximize sensitivity and resolution. The radar uses the same kind of signal processor as that used in commercial wind profilers. The first MMCR began operations at the CART in northern Oklahoma in late 1996 and has operated continuously the...

365 citations

Journal ArticleDOI
TL;DR: In this paper, a 3.2-cm-wavelength Doppler radar was used to track the smoke plume for over 30 km, and the radar observed that the column consisted of a pair of counterrotating horizontal vortices with rising motion along the centerline and sinking along the edges.
Abstract: To demonstrate the usefulness of active remote-sensing systems in observing forest fire plume behavior, we studied two fires, one using a 3.2-cm-wavelength Doppler radar, and one more extensively, using Doppler lidar. Both instruments observed the kinematics of the convection column, including the presence of two different types of rotation in the columns, and monitored the behavior of the smoke plume. The first fire, a forest fire that burned out of control, was observed by the Doppler radar during late-morning and afternoon hours. Strong horizontal ambient winds produced a bent-over convection column, which the radar observed to have strong horizontal flow at its edges and weaker flow along the centerline of the plume. This velocity pattern implies that the column consisted of a pair of counterrotating horizontal vortices (rolls), with rising motion along the centerline and sinking along the edges. The radar tracked the smoke plume for over 30 km. It also provided circular depolarization ratio ...

136 citations

Journal ArticleDOI
TL;DR: In this paper, a new method was proposed to retrieve vertical profiles of the parameters of cirrus cloud microphysics that are important for the estimation of climatic feedback, such as particle characteristic size and ice mass content.
Abstract: This paper describes a new method to retrieve vertical profiles of the parameters of cirrus cloud microphysics that are important for the estimation of climatic feedback. These parameters are the particle characteristic size and ice mass content. The method also allows calculations of vertical profiles of particle concentrations and ice mass flux. The method uses measurements of radar reflectivities and Doppler velocities from the ground-based zenith-viewing radar combined with measurements of downwelling brightness temperatures from an infrared radiometer operating in the “window” (10–12 µm) region. The proposed method is illustrated on data obtained on 26 November 1991 during FIRE-II [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] in Coffeyville, Kansas. This paper also presents estimates of uncertainties of parameter retrieval due to different a priori assumptions about particle shapes, distributions, fall velocity-size relationships and due to errors in m...

77 citations

Journal ArticleDOI
TL;DR: In this paper, three in-situ and five remote sensing techniques for measuring the height of the daytime convective boundary layer were compared, and good agreement between the different systems when the capping inversion was steep and well defined, and some variability when the stratification was not so sharply defined.
Abstract: Three in-situ and five remote sensing techniques for measuring the height of the daytime convective boundary layer were compared. There was, as a rule, good agreement between the different systems when the capping inversion was steep and well defined, and some variability when the stratification was not so sharply defined. Two indirect methods for estimating boundary-layer heights from the length scales of convective motions in the layer are also discussed.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a technique is presented to estimate ice cloud particle characteristic sizes and concentrations as well as the integrated ice water path from simultaneous ground-based radar and infrared radiometer measurements.
Abstract: A technique is presented to estimate ice cloud particle characteristic sizes and concentrations as well as the integrated ice water path from simultaneous ground-based radar and infrared radiometer measurements. The approach is based on the theoretical consideration of infrared thermal radiative transfer within a cloud and can be applied to clouds that are semitransparent in the infrared “window” and horizontally extensive. The suggested technique is applied to radar and infrared radiometer data collected during the Cloud Lidar and Radar Exploratory Test (CLARET-I) experiment. Retrieved values of ice cloud microphysical parameters are in general agreement with results obtained by other methods.

70 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: CloudSat as discussed by the authors is a satellite experiment designed to measure the vertical structure of clouds from space, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL).
Abstract: CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA–CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profi...

1,929 citations

Journal ArticleDOI
TL;DR: In this article, LiDAR data is used to estimate the canopy height of a single tree in a forest and to model the above-ground biomass and canopy volume of the forest.
Abstract: Light detection and ranging (LiDAR) technology provides horizontal and vertical information at high spatial resolutions and vertical accuracies. Forest attributes such as canopy height can be directly retrieved from LiDAR data. Direct retrieval of canopy height provides opportunities to model above-ground biomass and canopy volume. Access to the vertical nature of forest ecosystems also offers new opportunities for enhanced forest monitoring, management and planning.

1,046 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the literature on the analysis of profile measurements and the use of parameterisations and simple models, and suggest for the preprocessor development and for future research activities.

898 citations

Journal ArticleDOI
TL;DR: In this article, a simple parameterization has been developed to simulate global lightning distributions, with different formulations for continental and marine thunderstorms, and validated using two lightning data sets: one global and one regional.
Abstract: A simple parameterization has been developed to simulate global lightning distributions. Convective cloud top height is used as the variable in the parameterization, with different formulations for continental and marine thunderstorms. The parameterization has been validated using two lightning data sets: one global and one regional. In both cases the simulated lightning distributions and frequencies are in very good agreement with the observed lightning data. This parameterization could be used for global studies of lightning climatology; the earth's electric circuit; in general circulation models for modeling global lightning activity, atmospheric NO(x) concentrations, and perhaps forest fire distributions for both the present and future climate; and, possibly, even as a short-term forecasting aid.

707 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used large-eddy simulations (LES) for zero mean horizontal flow in the convective boundary layer (CBL) of a Boussinesq fluid, and found that the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments.
Abstract: Turbulence in the convective boundary layer (CBL) uniformly heated from below and topped by a layer of uniformly stratified fluid is investigated for zero mean horizontal flow using large-eddy simulations (LES). The Rayleigh number is effectively infinite, the Froude number of the stable layer is 0.09 and the surface roughness height relative to the height of the convective layer is varied between 10−6 and 10−2. The LES uses a finite-difference method to integrate the three-dimensional grid-volume-averaged Navier–Stokes equations for a Boussinesq fluid. Subgrid-scale (SGS) fluxes are determined from algebraically approximated second-order closure (SOC) transport equations for which all essential coefficients are determined from the inertial-range theory. The surface boundary condition uses the Monin–Obukhov relationships. A radiation boundary condition at the top of the computational domain prevents spurious reflections of gravity waves. The simulation uses 160 × 160 × 48 grid cells. In the asymptotic state, the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments. We found less agreement with respect to horizontal velocity fluctuations, pressure fluctuations and dissipation rates, which previous investigations tend to overestimate. Horizontal spectra exhibit an inertial subrange. The entrainment heat flux at the top of the CBL is carried by cold updraughts and warm downdraughts in the form of wisps at scales comparable with the height of the boundary layer. Plots of instantaneous flow fields show a spoke pattern in the lower quarter of the CBL which feeds large-scale updraughts penetrating into the stable layer aloft. The spoke pattern has also been found in a few previous investigations. Small-scale plumes near the surface and remote from strong updraughts do not merge together but decay while rising through large-scale downdraughts. The structure of updraughts and downdraughts is identified by three-dimensional correlation functions and conditionally averaged fields. The mean circulation extends vertically over the whole boundary layer. We find that updraughts are composed of quasi-steady large-scale plumes together with transient rising thermals which grow in size by lateral entrainment. The skewness of the vertical velocity fluctuations is generally positive but becomes negative in the lowest mesh cells when the dissipation rate exceeds the production rate due to buoyancy near the surface, as is the case for very rough surfaces. The LES results are used to determine the root-mean-square value of the surface friction velocity and the mean temperature difference between the surface and the mixed layer as a function of the roughness height. The results corroborate a simple model of the heat transfer in the surface layer.

612 citations