scispace - formally typeset
Search or ask a question
Author

Robert Atlas

Bio: Robert Atlas is an academic researcher from Atlantic Oceanographic and Meteorological Laboratory. The author has contributed to research in topics: Numerical weather prediction & Data assimilation. The author has an hindex of 41, co-authored 210 publications receiving 6828 citations. Previous affiliations of Robert Atlas include Goddard Space Flight Center & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a variational analysis method is used to combine surface wind data derived from conventional and in situ sources and multiple satellites into a consistent near-global analysis at 25-km resolution, every 6 h.
Abstract: The ocean surface wind mediates exchanges between the ocean and the atmosphere. These air–sea exchange processes are critical for understanding and predicting atmosphere, ocean, and wave phenomena on many time and space scales. A cross-calibrated multiplatform (CCMP) long-term data record of satellite ocean surface winds is available from 1987 to 2008 with planned extensions through 2012. A variational analysis method (VAM) is used to combine surface wind data derived from conventional and in situ sources and multiple satellites into a consistent nearglobal analysis at 25-km resolution, every 6 h. The input data are cross-calibrated wind speeds derived from the Special Sensor Microwave Imager (SSM/I; F08–F15), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and wind vectors from SeaWinds on the NASA Quick Scatterometer (QuikSCAT) and on the second Japanese Advanced Earth Observing Satellite (ADEOS-...

820 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the performance of AIRS and examine how it is meeting its operational and research objectives based on the experience of more than 2 years with AIRS data.
Abstract: This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

620 citations

Journal ArticleDOI
TL;DR: The Cyclone Global Navigation Satellite System (CYGNSS) is a new NASA earth science mission scheduled to be launched in 2016 that focuses on tropical cyclones and tropical convection as discussed by the authors.
Abstract: The Cyclone Global Navigation Satellite System (CYGNSS) is a new NASA earth science mission scheduled to be launched in 2016 that focuses on tropical cyclones (TCs) and tropical convection. The mission’s two primary objectives are the measurement of ocean surface wind speed with sufficient temporal resolution to resolve short-time-scale processes such as the rapid intensification phase of TC development and the ability of the surface measurements to penetrate through the extremely high precipitation rates typically encountered in the TC inner core. The mission’s goal is to support significant improvements in our ability to forecast TC track, intensity, and storm surge through better observations and, ultimately, better understanding of inner-core processes. CYGNSS meets its temporal sampling objective by deploying a constellation of eight satellites. Its ability to see through heavy precipitation is enabled by its operation as a bistatic radar using low-frequency GPS signals. The mission will depl...

285 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a methodology to assign directions to the SSM/I wind speeds and to produce analyses using these data, which has been used in a variety of atmospheric and oceanic applications and are available to interested investigators.
Abstract: The Special Sensor Microwave Imagers (SSM/I) aboard three DMSP satellites have improved a large dataset of surface wind speeds over the global oceans from July 1987 to the present. These data are characterized by high resolution, coverage, and accuracy, but their application has been limited by the lack of directional information. In an effort to extend the applicability of these data , methodology has been developed to assign directions to the SSM/I wind speeds and to produce analyses using these data. Following extensive testing, this methodology has been used to generate a seven and one-half year dataset (from July 1987 through December 1994) of global SSM/I wind vectors. These data are currently being used in a variety of atmospheric and oceanic applications and are available to interested investigators. Recent results presented in this paper show the accuracy of the SSM/I wind velocities, the ability of these data to improve surface wind analyses, and the propagation of a synoptic-scale convergent cortex in the Tropics that can be tracked from year to year in annual mean SSM/I wind fields. 11 refs., 5 figs., 2 tabs.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Book
01 Nov 2002
TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Abstract: This comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of the subject, equations of motion and their approximations, a modern and clear description of numerical methods, and the determination of initial conditions using weather observations (an important science known as data assimilation). Finally, this book provides a clear discussion of the problems of predictability and chaos in dynamical systems and how they can be applied to atmospheric and oceanic systems. Professors and students in meteorology, atmospheric science, oceanography, hydrology and environmental science will find much to interest them in this book, which can also form the basis of one or more graduate-level courses.

2,240 citations