scispace - formally typeset
Search or ask a question
Author

Robert B. Gramacy

Bio: Robert B. Gramacy is an academic researcher from Virginia Tech. The author has contributed to research in topics: Gaussian process & Computer experiment. The author has an hindex of 43, co-authored 143 publications receiving 6225 citations. Previous affiliations of Robert B. Gramacy include Brigham Young University & University of South Florida.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a non-stationary modeling methodologies that couple stationary Gaussian processes with treed partitioning is presented. But this method is not applicable to the design of a rocket booster.
Abstract: Motivated by a computer experiment for the design of a rocket booster, this article explores nonstationary modeling methodologies that couple stationary Gaussian processes with treed partitioning. Partitioning is a simple but effective method for dealing with nonstationarity. The methodological developments and statistical computing details that make this approach efficient are described in detail. In addition to providing an analysis of the rocket booster simulator, we show that our approach is effective in other arenas as well.

540 citations

Posted Content
TL;DR: This article explores nonstationary modeling methodologies that couple stationary Gaussian processes with treed partitioning and shows that this approach is effective in other arenas as well.
Abstract: Motivated by a computer experiment for the design of a rocket booster, this paper explores nonstationary modeling methodologies that couple stationary Gaussian processes with treed partitioning. Partitioning is a simple but effective method for dealing with nonstationarity. The methodological developments and statistical computing details which make this approach efficient are described in detail. In addition to providing an analysis of the rocket booster simulator, our approach is demonstrated to be effective in other arenas.

518 citations

Journal ArticleDOI
TL;DR: A family of local sequential design schemes that dynamically define the support of a Gaussian process predictor based on a local subset of the data are derived, enabling a global predictor able to take advantage of modern multicore architectures.
Abstract: We provide a new approach to approximate emulation of large computer experiments. By focusing expressly on desirable properties of the predictive equations, we derive a family of local sequential design schemes that dynamically define the support of a Gaussian process predictor based on a local subset of the data. We further derive expressions for fast sequential updating of all needed quantities as the local designs are built up iteratively. Then we show how independent application of our local design strategy across the elements of a vast predictive grid facilitates a trivially parallel implementation. The end result is a global predictor able to take advantage of modern multicore architectures, providing a nonstationary modeling feature as a bonus. We demonstrate our method on two examples using designs with thousands of data points, and compare to the method of compactly supported covariances. Supplementary materials for this article are available online.

358 citations

Journal ArticleDOI
TL;DR: This study provides an introductory overview of several methods for analyzing large spatial data and describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology.
Abstract: The Gaussian process is an indispensable tool for spatial data analysts. The onset of the “big data” era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable to handling big spatial data have been proposed. These modern methods often exploit low-rank structures and/or multi-core and multi-threaded computing environments to facilitate computation. This study provides, first, an introductory overview of several methods for analyzing large spatial data. Second, this study describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology. Specifically, each research group was provided with two training datasets (one simulated and one observed) along with a set of prediction locations. Each group then wrote their own implementation of their method to produce predictions at the given location and each was subsequently run on a common computing environment. The methods were then compared in terms of various predictive diagnostics. Supplementary materials regarding implementation details of the methods and code are available for this article online.

273 citations

Posted Content
TL;DR: In this article, the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology have been presented, and each group then wrote their own implementation of their method to produce predictions at the given location and each which was subsequently run on a common computing environment.
Abstract: The Gaussian process is an indispensable tool for spatial data analysts. The onset of the "big data" era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable to handling big spatial data have been proposed. These modern methods often exploit low rank structures and/or multi-core and multi-threaded computing environments to facilitate computation. This study provides, first, an introductory overview of several methods for analyzing large spatial data. Second, this study describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology. Specifically, each research group was provided with two training datasets (one simulated and one observed) along with a set of prediction locations. Each group then wrote their own implementation of their method to produce predictions at the given location and each which was subsequently run on a common computing environment. The methods were then compared in terms of various predictive diagnostics. Supplementary materials regarding implementation details of the methods and code are available for this article online.

243 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: This review paper introduces Bayesian optimization, highlights some of its methodological aspects, and showcases a wide range of applications.
Abstract: Big Data applications are typically associated with systems involving large numbers of users, massive complex software systems, and large-scale heterogeneous computing and storage architectures. The construction of such systems involves many distributed design choices. The end products (e.g., recommendation systems, medical analysis tools, real-time game engines, speech recognizers) thus involve many tunable configuration parameters. These parameters are often specified and hard-coded into the software by various developers or teams. If optimized jointly, these parameters can result in significant improvements. Bayesian optimization is a powerful tool for the joint optimization of design choices that is gaining great popularity in recent years. It promises greater automation so as to increase both product quality and human productivity. This review paper introduces Bayesian optimization, highlights some of its methodological aspects, and showcases a wide range of applications.

3,703 citations

BookDOI
10 May 2011
TL;DR: A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data and its applications in environmental epidemiology, educational research, and fisheries science are studied.
Abstract: Foreword Stephen P. Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng Introduction to MCMC, Charles J. Geyer A short history of Markov chain Monte Carlo: Subjective recollections from in-complete data, Christian Robert and George Casella Reversible jump Markov chain Monte Carlo, Yanan Fan and Scott A. Sisson Optimal proposal distributions and adaptive MCMC, Jeffrey S. Rosenthal MCMC using Hamiltonian dynamics, Radford M. Neal Inference and Monitoring Convergence, Andrew Gelman and Kenneth Shirley Implementing MCMC: Estimating with confidence, James M. Flegal and Galin L. Jones Perfection within reach: Exact MCMC sampling, Radu V. Craiu and Xiao-Li Meng Spatial point processes, Mark Huber The data augmentation algorithm: Theory and methodology, James P. Hobert Importance sampling, simulated tempering and umbrella sampling, Charles J.Geyer Likelihood-free Markov chain Monte Carlo, Scott A. Sisson and Yanan Fan MCMC in the analysis of genetic data on related individuals, Elizabeth Thompson A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data, Brian Caffo, DuBois Bowman, Lynn Eberly, and Susan Spear Bassett Partially collapsed Gibbs sampling & path-adaptive Metropolis-Hastings in high-energy astrophysics, David van Dyk and Taeyoung Park Posterior exploration for computationally intensive forward models, Dave Higdon, C. Shane Reese, J. David Moulton, Jasper A. Vrugt and Colin Fox Statistical ecology, Ruth King Gaussian random field models for spatial data, Murali Haran Modeling preference changes via a hidden Markov item response theory model, Jong Hee Park Parallel Bayesian MCMC imputation for multiple distributed lag models: A case study in environmental epidemiology, Brian Caffo, Roger Peng, Francesca Dominici, Thomas A. Louis, and Scott Zeger MCMC for state space models, Paul Fearnhead MCMC in educational research, Roy Levy, Robert J. Mislevy, and John T. Behrens Applications of MCMC in fisheries science, Russell B. Millar Model comparison and simulation for hierarchical models: analyzing rural-urban migration in Thailand, Filiz Garip and Bruce Western

2,415 citations