scispace - formally typeset
Search or ask a question
Author

Robert B. Staszewski

Bio: Robert B. Staszewski is an academic researcher from Texas Instruments. The author has contributed to research in topics: Phase-locked loop & Transmitter. The author has an hindex of 13, co-authored 20 publications receiving 1295 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The first all-digital PLL and polar transmitter for mobile phones is presented, exploiting the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom.
Abstract: We present the first all-digital PLL and polar transmitter for mobile phones. They are part of a single-chip GSM/EDGE transceiver SoC fabricated in a 90 nm digital CMOS process. The circuits are architectured from the ground up to be compatible with digital deep-submicron CMOS processes and be readily integrateable with a digital baseband and application processor. To achieve this, we exploit the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom. The transmitter architecture is fully digital and utilizes the wideband direct frequency modulation capability of the all-digital PLL. The amplitude modulation is realized digitally by regulating the number of active NMOS transistor switches in accordance with the instantaneous amplitude. The conventional RF frequency synthesizer architecture, based on a voltage-controlled oscillator and phase/frequency detector and charge-pump combination, has been replaced with a digitally controlled oscillator and a time-to-digital converter. The transmitter performs GMSK modulation with less than 0.5/spl deg/ rms phase error, -165 dBc/Hz phase noise at 20 MHz offset, and 10 /spl mu/s settling time. The 8-PSK EDGE spectral mask is met with 1.2% EVM. The transmitter occupies 1.5 mm/sup 2/ and consumes 42 mA at 1.2 V supply while producing 6 dBm RF output power.

695 citations

Proceedings ArticleDOI
29 Aug 2005
TL;DR: A 1.2V 42mA all-digital PLL and polar transmitter for a single-chip GSM/EDGE transceiver is implemented in 90nm CMOS and achieves -165dBc/Hz phase noise at 20MHz offset, with 10 /spl mu/s settling time.
Abstract: A 1.2V 42mA all-digital PLL and polar transmitter for a single-chip GSM/EDGE transceiver is implemented in 90nm CMOS. It transmits GMSK with 0.5/spl deg/ rms phase error and achieves -165dBc/Hz phase noise at 20MHz offset, with 10 /spl mu/s settling time. A digitally controlled 6dBm class-E PA modulates the amplitude and meets the EDGE spectral mask with 3.5% EVM.

176 citations

Proceedings ArticleDOI
01 Feb 2008
TL;DR: The RF transceiver is built on the Digital RF Processor (DRP) technology, and the ADPLL-based transmitter uses a polar architecture with all-digital PM-FM and AM paths.
Abstract: The RF transceiver is built on the Digital RF Processor (DRP) technology The ADPLL-based transmitter uses a polar architecture with all-digital PM-FM and AM paths The receiver uses a discrete-time architecture in which the RF signal is directly sampled and processed using analog and DSP techniques A 26 MHz digitally controlled crystal oscillator (DCXO) generates frequency reference (FREF) and has a means of high-frequency dithering to minimize the effects of coupling from digitally controlled PA driver (DPA) to DCXO by de-sensitizing its slicing buffer

71 citations

Proceedings ArticleDOI
18 Sep 2005
TL;DR: The receiver in the first single-chip GSM transceiver that incorporates full integration of quad-band receiver, transmitter, memory, power management, dedicated ARM processor and RF built-in self test in a 90 nm digital CMOS process is presented.
Abstract: We present the receiver in the first single-chip GSM transceiver that incorporates full integration of quad-band receiver, transmitter, memory, power management, dedicated ARM processor and RF built-in self test in a 90 nm digital CMOS process. The architecture uses direct RF sampling in the receiver and an all-digital PLL in the transmitter. The receive chain uses discrete-time analog signal processing to down convert, down- sample, filter and analog-to-digital convert the received signal. An auxiliary feedback is provided at the mixer output that can linearize the entire receive chain. The receiver meets a sensitivity of -110 dBm at 60 mA in a 1.4V digital CMOS process

57 citations

Patent
19 Jun 2003
TL;DR: In this paper, the proportional loop gain path is used during signal acquisition to provide large loop bandwidth, hence fast signal acquisition of a desired signal. And during the PLL's signal tracking phase, the integral loop gain block is enabled and its output is combined with output from the proportional linear gain path to provide higher order filtering of the desired signal, which can be measured and subtracted to help improve signal tracking settling times.
Abstract: System and method for providing type-II (and higher order) phase-locked loops (PLLs) with a fast signal acquisition mode. A preferred embodiment comprises a loop filter with a proportional loop gain path (proportional loop gain circuit 1115 ) and an integral loop gain block (integral loop gain block 1120 ). The proportional loop gain path is used during signal acquisition to provide large loop bandwidth, hence fast signal acquisition of a desired signal. Then, during the PLL's signal tracking phase, the integral loop gain block is enabled and its output is combined with output from the proportional loop gain path to provide higher order filtering of the desired signal. An offset that may be present due to the use of the proportional loop gain path can be measured and subtracted to help improve signal tracking settling times.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The first all-digital PLL and polar transmitter for mobile phones is presented, exploiting the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom.
Abstract: We present the first all-digital PLL and polar transmitter for mobile phones. They are part of a single-chip GSM/EDGE transceiver SoC fabricated in a 90 nm digital CMOS process. The circuits are architectured from the ground up to be compatible with digital deep-submicron CMOS processes and be readily integrateable with a digital baseband and application processor. To achieve this, we exploit the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom. The transmitter architecture is fully digital and utilizes the wideband direct frequency modulation capability of the all-digital PLL. The amplitude modulation is realized digitally by regulating the number of active NMOS transistor switches in accordance with the instantaneous amplitude. The conventional RF frequency synthesizer architecture, based on a voltage-controlled oscillator and phase/frequency detector and charge-pump combination, has been replaced with a digitally controlled oscillator and a time-to-digital converter. The transmitter performs GMSK modulation with less than 0.5/spl deg/ rms phase error, -165 dBc/Hz phase noise at 20 MHz offset, and 10 /spl mu/s settling time. The 8-PSK EDGE spectral mask is met with 1.2% EVM. The transmitter occupies 1.5 mm/sup 2/ and consumes 42 mA at 1.2 V supply while producing 6 dBm RF output power.

695 citations

Journal ArticleDOI
TL;DR: The receiver's flexible analog baseband samples the channel of interest at zero IF, and is followed by clock-programmable downsampling with embedded filtering, giving a tunable selectivity that exceeds that of an RF prefilter, and a conversion rate that is low enough for A/D conversion at only milliwatts.
Abstract: After being the subject of speculation for many years, a software-defined radio receiver concept has emerged that is suitable for mobile handsets. A key step forward is the realization that in mobile handsets, it is enough to receive one channel with any bandwidth, situated in any band. Thus, the front-end can be tuned electronically. Taking a cue from a digital front-end, the receiver's flexible analog baseband samples the channel of interest at zero IF, and is followed by clock-programmable downsampling with embedded filtering. This gives a tunable selectivity that exceeds that of an RF prefilter, and a conversion rate that is low enough for A/D conversion at only milliwatts. The front-end consists of a wideband low noise amplifier and a mixer tunable by a wideband LO. A 90-nm CMOS prototype tunes 200 kHz to 20-MHz-wide channels located anywhere from 800 MHz to 6 GHz

438 citations

Journal ArticleDOI
TL;DR: In this paper, a software-defined radio receiver is designed from a low-power ADC perspective, exploiting programmability of windowed integration sampler and clock-programmable discrete-time analog filters.
Abstract: A software-defined radio receiver is designed from a low-power ADC perspective, exploiting programmability of windowed integration sampler and clock-programmable discrete-time analog filters. To cover the major frequency bands in use today, a wideband RF front-end, including the low-noise amplifier (LNA) and a wide tuning-range synthesizer, spanning over 800 MHz to 6 GHz is designed. The wideband LNA provides 18-20 dB of maximum gain and 3-3.5 dB of noise figure over 800 MHz to 6 GHz. A low 1/f noise and high-linearity mixer is designed which utilizes the passive mixer core properties and provides around +70 dBm IIP2 over the bandwidth of operation. The entire receiver circuits are implemented in 90-nm CMOS technology. Programmability of the receiver is tested for GSM and 802.11g standards

433 citations

Journal ArticleDOI
TL;DR: A 20-ps time-to-digital converter (TDC) realized in 90-nm digital CMOS is used as a phase/frequency detector and charge pump replacement in an all-digital phase-locked loop for a fully-compliant Global System for Mobile Communications (GSM) transceiver.
Abstract: We propose and demonstrate a 20-ps time-to-digital converter (TDC) realized in 90-nm digital CMOS. It is used as a phase/frequency detector and charge pump replacement in an all-digital phase-locked loop for a fully-compliant Global System for Mobile Communications (GSM) transceiver. The TDC core is based on a pseudodifferential digital architecture that makes it insensitive to nMOS and pMOS transistor mismatches. The time conversion resolution is equal to an inverter propagation delay, which is the finest logic-level regenerative timing in CMOS. The TDC is self calibrating with the estimation accuracy better than 1%. It additionally serves as a CMOS process strength estimator for analog circuits in this large system-on-chip. Measured integral nonlinearity is 0.7 least significant bits. The TDC consumes 5.3 mA raw and 1.3 mA with power management from a 1.3-V supply.

366 citations

Journal ArticleDOI
03 Jun 2007
TL;DR: A broadband inductorless low-noise amplifier (LNA) design that utilizes simultaneous noise and distortion cancellation is presented and is demonstrated to have a minimum internal gain of 14.5 dB.
Abstract: A broadband inductorless low-noise amplifier (LNA) design that utilizes simultaneous noise and distortion cancellation is presented. Concurrent cancellation of the intrinsic third-order distortion from individual stages is exhibited with the common-gate and common-source cascade. The LNA is then limited by the second-order interaction between the common source and common gate stages, which is common in all cascade amplifiers. Further removal of this third-order distortion is achieved by incorporating a second-order-distortion-free circuit technique in the common gate stage. Implemented in 0.13 m CMOS technology, this LNA achieved 16 dBm in both the 900 MHz and 2 GHz bands. Measurements demonstrate that the LNA has a minimum internal gain of 14.5 dB, noise figure of 2.6 dB from 800 MHz to 2.1GHz while drawing 11.6 mA from 1.5 V supply voltage.

363 citations