scispace - formally typeset
Search or ask a question
Author

Robert Babuska

Bio: Robert Babuska is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Fuzzy logic & Reinforcement learning. The author has an hindex of 56, co-authored 371 publications receiving 15388 citations. Previous affiliations of Robert Babuska include Carnegie Mellon University & Czech Technical University in Prague.


Papers
More filters
Journal ArticleDOI
01 Mar 2008
TL;DR: The benefits and challenges of MARL are described along with some of the problem domains where the MARL techniques have been applied, and an outlook for the field is provided.
Abstract: Multiagent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must, instead, discover a solution on their own, using learning. A significant part of the research on multiagent learning concerns reinforcement learning techniques. This paper provides a comprehensive survey of multiagent reinforcement learning (MARL). A central issue in the field is the formal statement of the multiagent learning goal. Different viewpoints on this issue have led to the proposal of many different goals, among which two focal points can be distinguished: stability of the agents' learning dynamics, and adaptation to the changing behavior of the other agents. The MARL algorithms described in the literature aim---either explicitly or implicitly---at one of these two goals or at a combination of both, in a fully cooperative, fully competitive, or more general setting. A representative selection of these algorithms is discussed in detail in this paper, together with the specific issues that arise in each category. Additionally, the benefits and challenges of MARL are described along with some of the problem domains where the MARL techniques have been applied. Finally, an outlook for the field is provided.

1,878 citations

Book
30 Apr 1998
TL;DR: Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering point of view and focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements, and on the design of nonlinear controllers based on fuzzy models.
Abstract: From the Publisher: Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering point of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.

1,183 citations

Reference BookDOI
29 Apr 2010
TL;DR: Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP, with a focus on continuous-variable problems.
Abstract: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

917 citations

Journal ArticleDOI
01 Nov 2012
TL;DR: The workings of the natural gradient is described, which has made its way into many actor-critic algorithms over the past few years, and a review of several standard and natural actor-Critic algorithms is given.
Abstract: Policy-gradient-based actor-critic algorithms are amongst the most popular algorithms in the reinforcement learning framework. Their advantage of being able to search for optimal policies using low-variance gradient estimates has made them useful in several real-life applications, such as robotics, power control, and finance. Although general surveys on reinforcement learning techniques already exist, no survey is specifically dedicated to actor-critic algorithms in particular. This paper, therefore, describes the state of the art of actor-critic algorithms, with a focus on methods that can work in an online setting and use function approximation in order to deal with continuous state and action spaces. After starting with a discussion on the concepts of reinforcement learning and the origins of actor-critic algorithms, this paper describes the workings of the natural gradient, which has made its way into many actor-critic algorithms over the past few years. A review of several standard and natural actor-critic algorithms is given, and the paper concludes with an overview of application areas and a discussion on open issues.

764 citations

Book ChapterDOI
01 Jan 2010
TL;DR: This chapter reviews a representative selection of multi-agent reinforcement learning algorithms for fully cooperative, fully competitive, and more general (neither cooperative nor competitive) tasks.
Abstract: Multi-agent systems can be used to address problems in a variety of domains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must instead discover a solution on their own, using learning. A significant part of the research on multi-agent learning concerns reinforcement learning techniques. This chapter reviews a representative selection of multi-agent reinforcement learning algorithms for fully cooperative, fully competitive, and more general (neither cooperative nor competitive) tasks. The benefits and challenges of multi-agent reinforcement learning are described. A central challenge in the field is the formal statement of a multi-agent learning goal; this chapter reviews the learning goals proposed in the literature. The problem domains where multi-agent reinforcement learning techniques have been applied are briefly discussed. Several multi-agent reinforcement learning algorithms are applied to an illustrative example involving the coordinated transportation of an object by two cooperative robots. In an outlook for the multi-agent reinforcement learning field, a set of important open issues are identified, and promising research directions to address these issues are outlined.

548 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations