scispace - formally typeset
Search or ask a question
Author

Robert Babuska

Bio: Robert Babuska is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Fuzzy logic & Reinforcement learning. The author has an hindex of 56, co-authored 371 publications receiving 15388 citations. Previous affiliations of Robert Babuska include Carnegie Mellon University & Czech Technical University in Prague.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2006
TL;DR: An integrated survey of the field of multi-agent learning is presented, in which the issue of the multi- agent learning goal is discussed and a representative selection of algorithms is reviewed.
Abstract: Multi-agent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, economics. Many tasks arising in these domains require that the agents learn behaviors online. A significant part of the research on multi-agent learning concerns reinforcement learning techniques. However, due to different viewpoints on central issues, such as the formal statement of the learning goal, a large number of different methods and approaches have been introduced. In this paper we aim to present an integrated survey of the field. First, the issue of the multi-agent learning goal is discussed, after which a representative selection of algorithms is reviewed. Finally, open issues are identified and future research directions are outlined

118 citations

Proceedings ArticleDOI
20 Mar 1995
TL;DR: A compatible cluster merging algorithm is suggested for finding the "optimal" number of rules in a rule base, based on the compatible clusters merging algorithm proposed recently and modified.
Abstract: Making a fuzzy model of a dynamic process requires the tuning of many parameters. Doing this heuristically is tedious and time consuming. Clustering techniques provide an easier way for forming fuzzy model using measurements made on the system. However, the number of clusters and hence the number of rules the fuzzy rule-base must be determined a priori. It is usually not possible to determine beforehand the optimal number of rules in a rule-base. In this paper, a compatible cluster merging algorithm is suggested for finding the "optimal" number of rules in a rule base. It is based on the compatible cluster merging algorithm proposed recently. The original compatible cluster merging algorithm has certain undesired properties for fuzzy modelling. Hence, a modification is proposed and a modified compatible cluster merging algorithm is described. The new algorithm combines techniques from the original compatible cluster merging, fuzzy multicriteria decision making and heuristics. Examples are given that show the applicability of the proposed method. >

106 citations

Journal ArticleDOI
01 Oct 1999
TL;DR: A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm, and a fuzzy relation between the clusters and the class identifiers is computed.
Abstract: A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm. The class labels are not used in this step. Then, a fuzzy relation between the clusters and the class identifiers is computed. This approach allows the number of prototypes to be independent of the number of actual classes. For the classification of unseen patterns, the membership degrees of the feature vector in the clusters are first computed by using the distance measure of the clustering algorithm. Then, the output fuzzy set is obtained by relational composition. This fuzzy set contains the membership degrees of the pattern in the given classes. A crisp decision is obtained by defuzzification, which gives either a single class or a "reject" decision, when a unique class cannot be selected based on the available information. The principle of the proposed method is demonstrated on an artificial data set and the applicability of the method is shown on the identification of live-stock from recorded sound sequences. The obtained results are compared with two other classifiers.

105 citations

Journal ArticleDOI
31 Jan 2018
TL;DR: Using autonomous racing tests in the TORCS simulator, it is shown how the integrated methods quickly learn policies that generalize to new environments much better than deep reinforcement learning without state representation learning.
Abstract: Most deep reinforcement learning techniques are unsuitable for robotics, as they require too much interaction time to learn useful, general control policies. This problem can be largely attributed to the fact that a state representation needs to be learned as a part of learning control policies, which can only be done through fitting expected returns based on observed rewards. While the reward function provides information on the desirability of the state of the world, it does not necessarily provide information on how to distill a good, general representation of that state from the sensory observations. State representation learning objectives can be used to help learn such a representation. While many of these objectives have been proposed, they are typically not directly combined with reinforcement learning algorithms. We investigate several methods for integrating state representation learning into reinforcement learning. In these methods, the state representation learning objectives help regularize the state representation during the reinforcement learning, and the reinforcement learning itself is viewed as a crucial state representation learning objective and allowed to help shape the representation. Using autonomous racing tests in the TORCS simulator, we show how the integrated methods quickly learn policies that generalize to new environments much better than deep reinforcement learning without state representation learning.

105 citations

Journal ArticleDOI
01 Jun 2012
TL;DR: Two new actor-critic algorithms for reinforcement learning that learn a process model and a reference model which represents a desired behavior are proposed, from which desired control actions can be calculated using the inverse of the learned process model.
Abstract: We propose two new actor-critic algorithms for reinforcement learning Both algorithms use local linear regression (LLR) to learn approximations of the functions involved A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning The first algorithm uses a novel model-based update rule for the actor parameters The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations