scispace - formally typeset
Search or ask a question
Author

Robert Babuska

Bio: Robert Babuska is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Fuzzy logic & Reinforcement learning. The author has an hindex of 56, co-authored 371 publications receiving 15388 citations. Previous affiliations of Robert Babuska include Carnegie Mellon University & Czech Technical University in Prague.


Papers
More filters
Journal ArticleDOI
30 Jun 2021
TL;DR: Wang et al. as mentioned in this paper developed a multi-modal 2D object detector, and proposed deterministic and stochastic sensor-aware feature fusion strategies to address the issue of changing lighting conditions and asymmetric sensor degradation in object detection.
Abstract: Deep neural networks designed for vision tasks are often prone to failure when they encounter environmental conditions not covered by the training data. Single-modal strategies are insufficient when the sensor fails to acquire information due to malfunction or its design limitations. Multi-sensor configurations are known to provide redundancy, increase reliability, and are crucial in achieving robustness against asymmetric sensor failures. To address the issue of changing lighting conditions and asymmetric sensor degradation in object detection, we develop a multi-modal 2D object detector, and propose deterministic and stochastic sensor-aware feature fusion strategies. The proposed fusion mechanisms are driven by the estimated sensor measurement reliability values/weights. Reliable object detection in harsh lighting conditions is essential for applications such as self-driving vehicles and human-robot interaction. We also propose a new “r-blended” hybrid depth modality for RGB-D sensors. Through extensive experimentation, we show that the proposed strategies outperform the existing state-of-the-art methods on the FLIR-Thermal dataset, and obtain promising results on the SUNRGB-D dataset. We additionally record a new RGB-Infra indoor dataset, namely L515-Indoors, and demonstrate that the proposed object detection methodologies are highly effective for a variety of lighting conditions.

1 citations

01 Jan 2006
TL;DR: An effective reinforcement learning algorithm based on non Markov environment is proposed, which uses linear programming to find the best-response policy, and avoids solving multiple Nash equilibria problem.
Abstract: In this paper several multiagent reinforcement learning algorithms are investigated, compared and analyzed. An effective reinforcement learning algorithm based on non Markov environment is proposed. This algorithm uses linear programming to find the best-response policy, and avoids solving multiple Nash equilibria problem. The algorithm involves simple procedures and easy computations, and can guarantee good learning convergence in some situations. Experiment results show that this algorithm is effective. Keyword: multiagent; reinforcement learning; markov environment; nash equilibria

1 citations

Proceedings ArticleDOI
02 Dec 2001
TL;DR: A fault-tolerant scheme for sensor faults in output-feedback control is developed by using standard linear design methods combined with try decision logic and 'soft' reconfiguration based on fuzzy state blending.
Abstract: A fault-tolerant scheme for sensor faults in output-feedback control is developed by using standard linear design methods combined with try decision logic and 'soft' reconfiguration based on fuzzy state blending. The main advantages of the presented method are the use of standard deterministic control-oriented observers without the need to design special diagnostic observers for the different faults, and the simplicity and transparency of the decision logic. The control scheme is tolerant with regard to total and partial sensor faults occurring separately or simultaneously (under certain specified conditions). The decision logic gives information both on the localization of the fault and its severity. Experimental real-time results are presented for a laboratory system.

1 citations

Journal ArticleDOI
TL;DR: In this article , a neural network-based symbolic regression method was proposed to construct physically plausible models based on limited training data and prior knowledge about the system, which can be applied to learn the whole analytic formula as well as the coefficients.
Abstract: —Many real-world systems can be de- scribed by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system’s behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. In this pa- per, we propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on four test systems: the Turtle- Bot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations