scispace - formally typeset
Search or ask a question
Author

Robert Barat

Bio: Robert Barat is an academic researcher from New Jersey Institute of Technology. The author has contributed to research in topics: Terahertz radiation & Combustion. The author has an hindex of 18, co-authored 86 publications receiving 2677 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, stand-off interferometric imaging and sensing for the detection of explosives, weapons and drugs is emphasized, and future prospects of terahertz technology are discussed.
Abstract: Over the past 5 years, there has been a significant interest in employing terahertz (THz) technology, spectroscopy and imaging for security applications. There are three prime motivations for this interest: (a) THz radiation can detect concealed weapons since many non-metallic, non-polar materials are transparent to THz radiation; (b) target compounds such as explosives and illicit drugs have characteristic THz spectra that can be used to identify these compounds and (c) THz radiation poses no health risk for scanning of people. In this paper, stand-off interferometric imaging and sensing for the detection of explosives, weapons and drugs is emphasized. Future prospects of THz technology are discussed.

1,604 citations

Journal ArticleDOI
TL;DR: In this paper, the use of time-domain spectroscopy (TDS) was applied in transmission to the secondary explosive 1,3,5 trinitro-s-triazine.
Abstract: This letter describes the use of THz time-domain spectroscopy (TDS) applied in transmission to the secondary explosive 1,3,5 trinitro-s-triazine. Samples were also subjected to Fourier transform infrared spectroscopy over the same range for comparison. A detailed spectroscopy study is presented. General agreement between results from both methods confirms the absorption features found. A comparison study with computer molecular simulations shows that THz-TDS is sensitive to collective modes or vibrational modes of material.

144 citations

Patent
29 May 2003
TL;DR: In this article, a means for generating electromagnetic radiation of a desired terahertz frequency suitable for the examination, and for rendering the radiation incident at the region of interest, is provided.
Abstract: THz imaging apparatus and methods are provided for rapidly and effectively examining a region of interest to determine the presence of specified compositions. The apparatus includes means for generating electromagnetic radiation of a desired terahertz frequency suitable for the examination, and for rendering the radiation incident at the region of interest. Detector means are provided at a plurality of points in a plane spaced from the region of interest, for detecting the terahertz radiation reflected from or transmitted through the region. Means are provided for converting the detected terahertz radiation to an image of the region of interest from which the presence of the specified compositions are determinable.

88 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal decomposition of dichloromethane in hydrogen/oxygen mixtures and argon bath gas was carried out at 1 atm pressure in tubular flow reactors of varied surface-to-volume ratios.

86 citations

Journal ArticleDOI
TL;DR: Attenuation by the presence of dust degrades the IR channel but exhibits almost no measurable impact on the THz signal, and numerical simulations of THz attenuation with different dust concentrations agree with the measured results.
Abstract: In order to study and compare propagation features of terahertz (THz) links with infrared (IR) links under different weather conditions such as turbulence, fog, and dust particles, THz and IR free space communication links at 625 GHz carrier frequency and 1.5 μm wavelength, respectively, with a maximum data rate of 2.5 Gb/s have been developed. After propagating through the same channel perturbation caused by dust, attenuation of the carrier frequencies by dust as well as scintillation effects on both channels are analyzed by measuring the power attenuation and bit error rates. Attenuation by the presence of dust degrades the IR channel but exhibits almost no measurable impact on the THz signal. Numerical simulations of THz attenuation with different dust concentrations are presented and agree with the measured results.

82 citations


Cited by
More filters
PatentDOI
19 Oct 2007-Nature
TL;DR: An active metamaterial device capable of efficient real-time control and manipulation of terahertz radiation is demonstrated, which enables modulation of THz transmission by 50 per cent, an order of magnitude improvement over existing devices.
Abstract: Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

1,978 citations

Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations

Journal ArticleDOI
TL;DR: In this article, stand-off interferometric imaging and sensing for the detection of explosives, weapons and drugs is emphasized, and future prospects of terahertz technology are discussed.
Abstract: Over the past 5 years, there has been a significant interest in employing terahertz (THz) technology, spectroscopy and imaging for security applications. There are three prime motivations for this interest: (a) THz radiation can detect concealed weapons since many non-metallic, non-polar materials are transparent to THz radiation; (b) target compounds such as explosives and illicit drugs have characteristic THz spectra that can be used to identify these compounds and (c) THz radiation poses no health risk for scanning of people. In this paper, stand-off interferometric imaging and sensing for the detection of explosives, weapons and drugs is emphasized. Future prospects of THz technology are discussed.

1,604 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art and future prospects for terahertz quantum-cascade laser systems are reviewed, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.
Abstract: Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.

1,426 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations