scispace - formally typeset
Search or ask a question
Author

Robert Budny

Bio: Robert Budny is an academic researcher from Princeton University. The author has contributed to research in topics: Tokamak & Tokamak Fusion Test Reactor. The author has an hindex of 48, co-authored 169 publications receiving 7868 citations. Previous affiliations of Robert Budny include Stanford University & Princeton Plasma Physics Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new tokamak confinement regime has been observed on the Tokamak Fusion Test Reactor (TFTR), where particle and ion thermal diffusivities drop precipitously by a factor of \ensuremath{\sim}40 to the neoclassical level for the particles and to much less than the NE value for the ions in the region with reversed shear.
Abstract: A new tokamak confinement regime has been observed on the Tokamak Fusion Test Reactor (TFTR) where particle and ion thermal diffusivities drop precipitously by a factor of \ensuremath{\sim}40 to the neoclassical level for the particles and to much less than the neoclassical value for the ions in the region with reversed shear. This enhanced reversed shear confinement mode allows the central electron density to rise from 0.45 \ifmmode\times\else\texttimes\fi{} ${10}^{20}$ ${\mathrm{m}}^{\ensuremath{-}3}$ to \ensuremath{\sim}1.2 \ifmmode\times\else\texttimes\fi{} ${10}^{20}$ ${\mathrm{m}}^{\ensuremath{-}3}$ with ${T}_{i}\ensuremath{\sim}24$ keV and ${T}_{e}\ensuremath{\sim}8$ keV. This regime holds promise for significantly improved tokamak performance.

594 citations

Journal ArticleDOI
TL;DR: In this article, the scaling of the energy confinement in H mode plasmas with different hydrogenic isotopes (hydrogen, deuterium, DT and tritium) is investigated in JET.
Abstract: The scaling of the energy confinement in H mode plasmas with different hydrogenic isotopes (hydrogen, deuterium, DT and tritium) is investigated in JET. For ELM-free H modes the thermal energy confinement time τth is found to decrease weakly with the isotope mass (τth ~M-0.25±0.22), whilst in ELMy H modes the energy confinement time shows practically no mass dependence (τth ~M0.03±0.1). Detailed local transport analysis of the ELMy H mode plasmas reveals that the confinement in the edge region increases strongly with the isotope mass, whereas the confinement in the core region decreases with mass (τthcore ∝ M-0.16), in approximate agreement with theoretical models of the gyro-Bohm type (τgB ~M-0.2).

355 citations

Journal ArticleDOI
TL;DR: A detailed comparison is made between the tearing-type modes observed in TFTR supershot plasmas and the nonlinear, neoclassical pressure-gradient--driven tearing mode theory, finding good agreement on the non linear evolution of single helicity magnetic islands.
Abstract: A detailed comparison is made between the tearing-type modes observed in TFTR supershot plasmas and the nonlinear, neoclassical pressure-gradient--driven tearing mode theory. Good agreement is found on the nonlinear evolution of single helicity magnetic islands $(m/n\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}3/2$, $4/3$, or $5/4$, where $m$ and $n$ are the poloidal and toroidal mode numbers, respectively). The saturation of these neoclassical tearing-type modes requires ${\ensuremath{\Delta}}^{\ensuremath{'}}l0$ (where ${\ensuremath{\Delta}}^{\ensuremath{'}}$ is the well-known parameter for classical current-driven tearing instability), which is also consistent with the numerical calculation using the experimental data.

354 citations

Journal ArticleDOI
TL;DR: Deuterium neutral beams with energies up to 110 keV were injected into TFTR (Tokamak Fusion Test Reactor) plasmas at low magnetic field such that the beam injection velocities were comparable to the Alfven velocity.
Abstract: Deuterium neutral beams with energies up to 110 keV were injected into TFTR (Tokamak Fusion Test Reactor) plasmas at low magnetic field such that the beam injection velocities were comparable to the Alfven velocity. Excitation of toroidal Alfven eigenmodes was observed by Mirnov coils and beam emission spectroscopy. 10 refs., 4 figs.

342 citations

Journal ArticleDOI
TL;DR: In this article, the ITER design requirements were reviewed and as appropriate updated and the focus of this paper will be on recent work affecting ITER with special emphasis on topics affecting near-term procurement arrangements.
Abstract: As part of the ITER Design Review and in response to the issues identified by the Science and Technology Advisory Committee, the ITER physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, material choice and heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
A. Gibson, Tadashi Sekiguchi, K. Lackner1, S. Bodner, R. Hancox 
TL;DR: In this paper, the first experiments in JET have been described, which show that this large tokamak behaves in a similar manner to smaller tokak, but with correspondingly improved plasma parameters.
Abstract: FIRST EXPERIMENTS IN JET. Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching > 4 keV for power dissipations < 3 MW and with * Euratom-IPP Association, Institut fur Plasmaphysik, Garching, Federal Republic of Germany. ** Euratom-ENEA Association, Centro di Frascati, Italy. *** Euratom-UKAEA Association, Culham Laboratory, Abingdon, Oxfordshire, United Kingdom. **** University of Dusseldorf, Dusseldorf, Federal Republic of Germany. + Euratom-Ris0 Association, Ris National Laboratory, Roskilde, Denmark. ++ Euratom-CNR Association, Istituto di Física del Plasma, Milan, Italy. +++ Imperial College of Science and Technology, University of London, London, United Kingdom. ++++ Euratom-FOM Association, FOM Instituut voor Plasmafysica,. Nieuwegein, Netherlands. ® Euratom-Suisse Association, Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a spatially explicit modeling tool, integrated valuation of ecosystem services and tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels.
Abstract: Nature provides a wide range of benefits to people. There is increasing consensus about the importance of incorporating these “ecosystem services” into resource management decisions, but quantifying the levels and values of these services has proven difficult. We use a spatially explicit modeling tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels. We apply InVEST to stakeholder-defined scenarios of land-use/land-cover change in the Willamette Basin, Oregon. We found that scenarios that received high scores for a variety of ecosystem services also had high scores for biodiversity, suggesting there is little tradeoff between biodiversity conservation and ecosystem services. Scenarios involving more development had higher commodity production values, but lower levels of biodiversity conservation and ecosystem services. However, including payments for carbon sequestration alleviates this tradeoff. Quantifying ecosystem services in a spatially explicit manner, and analyzing tradeoffs between them, can help to make natural resource decisions more effective, efficient, and defensible.

2,056 citations

Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations