scispace - formally typeset
Search or ask a question
Author

Robert C. Duncan

Bio: Robert C. Duncan is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Neutron star & Magnetar. The author has an hindex of 31, co-authored 53 publications receiving 9761 citations. Previous affiliations of Robert C. Duncan include University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it is argued that a convective dynamo can also generate a very strong dipole field after the merger of a neutron star binary, but only if the merged star survives for as long as about 10-100 ms.
Abstract: It is proposed that the main observational signature of magnetars, high-field neutron stars, is gamma-ray bursts powered by their vast reservoirs of magnetic energy. If they acquire large recoils, most magnetars are unbound from the Galaxy or reside in an extended, weakly bound Galactic corona. There is evidence that the soft gamma repeaters are young magnetars. It is argued that a convective dynamo can also generate a very strong dipole field after the merger of a neutron star binary, but only if the merged star survives for as long as about 10-100 ms. Several mechanisms which could impart a large recoil to these stars at birth, sufficient to escape from the Galactic disk, are discussed.

2,482 citations

Journal ArticleDOI
TL;DR: In this article, the decay rate of the core field is a very strong function of temperature and therefore of the magnetic flux density, which is not present in the decay of the weaker fields associated with ordinary radio pulsars.
Abstract: We calculate the quiescent X-ray, neutrino, and Alfven wave emission from a neutron star with a very strong magnetic field, Bdipole ~ 1014 − 1015 G and Binterior ~ (5–10) × 1015 G. These results are compared with observations of quiescent emission from the soft gamma repeaters and from a small class of anomalous X-ray pulsars that we have previously identified with such objects. The magnetic field, rather than rotation, provides the main source of free energy, and the decaying field is capable of powering the quiescent X-ray emission and particle emission observed from these sources. New features that are not present in the decay of the weaker fields associated with ordinary radio pulsars include fracturing of the neutron star crust, strong heating of its core, and effective suppression of thermal conduction perpendicular to the magnetic field. As the magnetic field is forced through the crust by diffusive motions in the core, multiple small-scale fractures are excited, as well as a few large fractures that can power soft gamma repeater bursts. The decay rate of the core field is a very strong function of temperature and therefore of the magnetic flux density. The strongest prediction of the model is that these sources will show no optical emissions associated with X-ray heating of an accretion disk.

1,128 citations

Journal ArticleDOI
TL;DR: In this article, it is argued that most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence, and the possibilities for dynamo action during the various (precollapse) stages of convective motion that occur in the evolution of a massive star are examined.
Abstract: Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number In this sense, a neutron star dynamo is the quintessential fast dynamo The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted

917 citations

Journal ArticleDOI
28 Apr 2005-Nature
TL;DR: In this article, the authors reported the detection of a long (380's) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy.
Abstract: Soft-γ-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806–20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic γ-ray burst. At least a significant fraction of the mysterious short-duration γ-ray bursts may therefore come from extragalactic magnetars. On 27 December last year, SGR1806–20, a soft γ-ray repeater in Sagittarius, released a giant flare that has been called the brightest explosion ever recorded. SGRs are X-ray stars that sporadically emit low-energy γ-ray bursts. They are thought to be magnetars: neutron stars with observable emissions powered by magnetic dissipation. Five papers in this issue report initial and follow-up observations of this event. The data are remarkable: for instance in a fifth of a second, the flare released as much energy as the Sun radiates in a quarter of a million years. Such power can be explained by catastrophic global crust failure and magnetic reconnection on a magnetar. Releasing a hundred times the energy of the only two previous SGR giant flares, this may have been a once-in-a-lifetime event for astronomers, and for the star itself.

590 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new and complete catalog of the main properties of the 1509 pulsars for which published information currently exists, which includes all spin-powered pulsars, as well as anomalous X-ray pulsars and soft gamma-ray repeaters showing coherent pulsed emission.
Abstract: We have compiled a new and complete catalog of the main properties of the 1509 pulsars for which published information currently exists. The catalog includes all spin-powered pulsars, as well as anomalous X-ray pulsars and soft gamma-ray repeaters showing coherent pulsed emission, but excludes accretion-powered systems. References are given for all data listed. We have also developed a new World Wide Web interface for accessing and displaying either tabular or plotted data with the option of selecting pulsars to be displayed via logical conditions on parameter expressions. The Web interface has an expert mode giving access to a wider range of parameters and allowing the use of custom databases. For users with locally installed software and database on Unix or Linux systems, the catalog may be accessed from a command-line interface. C-language functions to access specified parameters are also available. The catalog is updated from time to time to include new information.

2,985 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
TL;DR: RHESSI as discussed by the authors is a Principal Investigator (PI) mission, where the PI is responsible for all aspects of the mission except the launch vehicle, and is designed to investigate particle acceleration and energy release in solar flares, through imaging and spectroscopy of hard X-ray/gamma-ray continua emitted by energetic electrons, and of gamma-ray lines produced by energetic ions.
Abstract: RHESSI is the sixth in the NASA line of Small Explorer (SMEX) missions and the first managed in the Principal Investigator mode, where the PI is responsible for all aspects of the mission except the launch vehicle. RHESSI is designed to investigate particle acceleration and energy release in solar flares, through imaging and spectroscopy of hard X-ray/gamma-ray continua emitted by energetic electrons, and of gamma-ray lines produced by energetic ions. The single instrument consists of an imager, made up of nine bi-grid rotating modulation collimators (RMCs), in front of a spectrometer with nine cryogenically-cooled germanium detectors (GeDs), one behind each RMC. It provides the first high-resolution hard X-ray imaging spectroscopy, the first high-resolution gamma-ray line spectroscopy, and the first imaging above 100 keV including the first imaging of gamma-ray lines. The spatial resolution is as fine as ~ 2.3 arc sec with a full-Sun (≳ 1°) field of view, and the spectral resolution is ~ 1–10 keV FWHM over the energy range from soft X-rays (3 keV) to gamma-rays (17 MeV). An automated shutter system allows a wide dynamic range (> 107) of flare intensities to be handled without instrument saturation. Data for every photon is stored in a solid-state memory and telemetered to the ground, thus allowing for versatile data analysis keyed to specific science objectives. The spin-stabilized (~ 15 rpm) spacecraft is Sun-pointing to within ~ 0.2° and operates autonomously. RHESSI was launched on 5 February 2002, into a nearly circular, 38° inclination, 600-km altitude orbit and began observations a week later. The mission is operated from Berkeley using a dedicated 11-m antenna for telemetry reception and command uplinks. All data and analysis software are made freely and immediately available to the scientific community.

1,991 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations

Journal ArticleDOI
TL;DR: In this article, a variety of composite quasar spectra using a homogeneous data set of over 2200 spectra from the Sloan Digital Sky Survey (SDSS) was created, and the median composite covers a restwavelength range from 800 to 8555 A and reaches a peak signal-to-noise ratio of over 300 per 1 A resolution element in the rest frame.
Abstract: We have created a variety of composite quasar spectra using a homogeneous data set of over 2200 spectra from the Sloan Digital Sky Survey (SDSS). The quasar sample spans a redshift range of 0.044 ≤ z ≤ 4.789 and an absolute r' magnitude range of -18.0 to -26.5. The input spectra cover an observed wavelength range of 3800–9200 A at a resolution of 1800. The median composite covers a rest-wavelength range from 800 to 8555 A and reaches a peak signal-to-noise ratio of over 300 per 1 A resolution element in the rest frame. We have identified over 80 emission-line features in the spectrum. Emission-line shifts relative to nominal laboratory wavelengths are seen for many of the ionic species. Peak shifts of the broad permitted and semiforbidden lines are strongly correlated with ionization energy, as previously suggested, but we find that the narrow forbidden lines are also shifted by amounts that are strongly correlated with ionization energy. The magnitude of the forbidden line shifts is 100 km s-1, compared with shifts of up to 550 km s-1 for some of the permitted and semiforbidden lines. At wavelengths longer than the Lyα emission, the continuum of the geometric mean composite is well fitted by two power laws, with a break at ≈5000 A. The frequency power-law index, αν, is -0.44 from ≈1300 to 5000 A and -2.45 redward of ≈5000 A. The abrupt change in slope can be accounted for partly by host-galaxy contamination at low redshift. Stellar absorption lines, including higher order Balmer lines, seen in the composites suggest that young or intermediate-age stars make a significant contribution to the light of the host galaxies. Most of the spectrum is populated by blended emission lines, especially in the range 1500–3500 A, which can make the estimation of quasar continua highly uncertain unless large ranges in wavelength are observed. An electronic table of the median quasar template is available.

1,973 citations