scispace - formally typeset
Search or ask a question
Author

Robert D. Kinley

Bio: Robert D. Kinley is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Asparagopsis taxiformis & Asparagopsis. The author has an hindex of 17, co-authored 27 publications receiving 1228 citations. Previous affiliations of Robert D. Kinley include James Cook University & Wageningen University and Research Centre.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that peripheral administration of two antibodies against pathological Tau forms significantly reduces biochemical Tau pathology in the JNPL3 mouse model and significantly delays the onset of motor function decline and weight loss.

310 citations

Journal ArticleDOI
06 Dec 2012-Neuron
TL;DR: A plaque-specific antibody is developed that targets a modified Aβ peptide (Aβ(p3-42), which showed robust clearance of pre-existing plaque without causing microhemorrhage and have profound implications for the development of therapeutic Aβ antibodies for Alzheimer's disease.

241 citations

Journal ArticleDOI
TL;DR: In this paper, marine red macroalga (seaweed) Asparagopsis taxiformis was used as a feed ingredient to eliminate enteric methane in cattle fed a high grain diet and provide evidence of improved livestock production performance.

145 citations

Journal ArticleDOI
17 Mar 2021-PLOS ONE
TL;DR: In this article, the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g HC4/ kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADGs/kg DMI), and carcass and meat quality in growing beef steers were determined.
Abstract: The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.

128 citations

Journal ArticleDOI
TL;DR: In vitro assessment method used here clearly demonstrated that Asparagopsis can inhibit methanogenesis at very low inclusion levels whereas the effect in vivo has yet to be confirmed.
Abstract: Livestock feed modification is a viable method for reducing methane emissions from ruminant livestock. Ruminant enteric methane is responsible approximately to 10% of greenhouse gas emissions in Australia. Some species of macroalgae have antimethanogenic activity on in vitro fermentation. This study used in vitro fermentation with rumen inoculum to characterise increasing inclusion rates of the red macroalga Asparagopsis taxiformis on enteric methane production and digestive efficiency throughout 72-h fermentations. At dose levels ≤1% of substrate organic matter there was minimal effect on gas and methane production. However, inclusion ≥2% reduced gas and eliminated methane production in the fermentations indicating a minimum inhibitory dose level. There was no negative impact on substrate digestibility for macroalgae inclusion ≤5%, however, a significant reduction was observed with 10% inclusion. Total volatile fatty acids were not significantly affected with 2% inclusion and the acetate levels were reduced in favour of increased propionate and, to a lesser extent, butyrate which increased linearly with increasing dose levels. A barrier to commercialisation of Asparagopsis is the mass production of this specific macroalgal biomass at a scale to provide supplementation to livestock. Another area requiring characterisation is the most appropriate method for processing (dehydration) and feeding to livestock in systems with variable feed quality and content. The in vitro assessment method used here clearly demonstrated that Asparagopsis can inhibit methanogenesis at very low inclusion levels whereas the effect in vivo has yet to be confirmed.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In a recent study, this article showed that low cerebrospinal fluid (CSF) Aβ42 and amyloid-PET positivity precede other AD manifestations by many years.
Abstract: Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer9s disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down9s syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients9 brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.

3,824 citations

Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: This work summarizes studies of structure and nucleation of amyloid and relate these to observations on amyloids polymorphism, prion strains, coaggregation of pathogenic proteins in tissues, and mechanisms of toxicity and transmissibility.

1,487 citations

Journal ArticleDOI
03 Oct 2019-Cell
TL;DR: Recent advances in the understanding of AD pathobiology are reviewed and current treatment strategies are discussed, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies.

1,369 citations

Journal ArticleDOI
TL;DR: Recent advances in formulation and delivery strategies, such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs are highlighted and discussed.
Abstract: The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies — such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs — and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.

1,274 citations

Journal ArticleDOI
TL;DR: Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly.

1,114 citations