scispace - formally typeset
Search or ask a question
Author

Robert D. Legare

Bio: Robert D. Legare is an academic researcher from Brown University. The author has contributed to research in topics: Breast cancer & Cancer. The author has an hindex of 18, co-authored 37 publications receiving 2927 citations. Previous affiliations of Robert D. Legare include Westerly Hospital & Brigham and Women's Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: The acquisition of a T674I resistance mutation at the time of relapse demonstrates that FIP1L1-PDGFRalpha is the target of imatinib, and data indicate that the deletion of genetic material may result in gain-of-function fusion proteins.
Abstract: Background Idiopathic hypereosinophilic syndrome involves a prolonged state of eosinophilia associated with organ dysfunction. It is of unknown cause. Recent reports of responses to imatinib in patients with the syndrome suggested that an activated kinase such as ABL, platelet-derived growth factor receptor (PDGFR), or KIT, all of which are inhibited by imatinib, might be the cause. Methods We treated 11 patients with the hypereosinophilic syndrome with imatinib and identified the molecular basis for the response. Results Nine of the 11 patients treated with imatinib had responses lasting more than three months in which the eosinophil count returned to normal. One such patient had a complex chromosomal abnormality, leading to the identification of a fusion of the Fip1-like 1 (FIP1L1) gene to the PDGFRα (PDGFRA) gene generated by an interstitial deletion on chromosome 4q12. FIP1L1-PDGFRα is a constitutively activated tyrosine kinase that transforms hematopoietic cells and is inhibited by imatinib (50 perce...

1,660 citations

Journal ArticleDOI
TL;DR: KPC412 is effective for treatment of FIP1L1-PDGFRalpha-induced disease and of imatinib-induced resistance due to the T674I mutation and the potential of alternative kinase inhibitors to overcome resistance in target tyrosine kinases is demonstrated.

233 citations

Journal ArticleDOI
TL;DR: Determining the nature and sequence of genetic changes in premalignant breast tissue may offer the greatest opportunity to alter the process of breast cancer development.

114 citations

Journal ArticleDOI
15 Jun 1996-Blood
TL;DR: Analysis of the linkage of the autosomal dominant platelet disorder to markers on chromosome 21q22 may identify a gene product that affects platelet production and function and contributes to the molecular evolution of hematologic malignancy.

110 citations

Journal ArticleDOI
TL;DR: Neoadjuvant carboplatin and weekly paclitaxel +/- trastuzumab achieve high pCR rates in patients with HER2-positive and triple-negative disease without exposure to an anthracycline.
Abstract: Purpose To evaluate the efficacy and safety of neoadjuvant carboplatin and weekly paclitaxel ± weekly trastuzumab in resectable and locally advanced breast cancer. Patients and Methods Women with stages IIA to IIIB disease received carboplatin dosed by six times the area under the curve every 4 weeks and paclitaxel 80 mg/m2 weekly for 16 weeks, and weekly trastuzumab was added for human epidermal growth factor receptor 2 (HER2) –positive status. The primary end point was the pathologic complete response (pCR) rate, defined as the absence of invasive disease in the breast and axillary nodes. Postoperative therapies were at the discretion of the treating physicians. Results Fifty-five patients were enrolled, and of these 43 had resectable disease. The median age was 54 years (range, 31 to 74 years). Treatment was well tolerated; there were no episodes of febrile neutropenia or grade 4 thrombocytopenia, and there were only two instances of grade 3 peripheral neuropathy. Overall, the pCR rate was 45%. The pCR...

103 citations


Cited by
More filters
Journal ArticleDOI
30 Jul 2009-Blood
TL;DR: The classification of myeloid neoplasms and acute leukemia is highlighted with the aim of familiarizing hematologists, clinical scientists, and hematopathologists not only with the major changes in the classification but also with the rationale for those changes.

4,274 citations

Journal ArticleDOI
TL;DR: Data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
Abstract: Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.

4,071 citations

Journal ArticleDOI
TL;DR: Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib, which should help guide the search for more effective therapy against a specific subset of lung cancers.
Abstract: Background Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of “acquired” resistance. Methods and Findings We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec). Conclusion In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.

3,390 citations

Journal ArticleDOI
TL;DR: Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer.
Abstract: Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer. This review focuses on its origin, molecular and clinical characteristics, and treatment.

3,125 citations