scispace - formally typeset
Search or ask a question
Author

Robert D. Oates

Bio: Robert D. Oates is an academic researcher from Boston University. The author has contributed to research in topics: Azoospermia & Intracytoplasmic sperm injection. The author has an hindex of 39, co-authored 94 publications receiving 6562 citations. Previous affiliations of Robert D. Oates include Beth Israel Deaconess Medical Center & University of Connecticut.


Papers
More filters
Journal ArticleDOI
TL;DR: The complete nucleotide sequence of AZFc was determined by identifying and distinguishing between near-identical amplicons (massive repeat units) using an iterative mapping–sequencing process.
Abstract: Deletions of the AZFc (azoospermia factor c) region of the Y chromosome are the most common known cause of spermatogenic failure. We determined the complete nucleotide sequence of AZFc by identifying and distinguishing between near-identical amplicons (massive repeat units) using an iterative mapping-sequencing process. A complex of three palindromes, the largest spanning 3 Mb with 99.97% identity between its arms, encompasses the AZFc region. The palindromes are constructed from six distinct families of amplicons, with unit lengths of 115-678 kb, and may have resulted from tandem duplication and inversion during primate evolution. The palindromic complex contains 11 families of transcription units, all expressed in testis. Deletions of AZFc that cause infertility are remarkably uniform, spanning a 3.5-Mb segment and bounded by 229-kb direct repeats that probably served as substrates for homologous recombination.

626 citations

Journal ArticleDOI
01 Apr 1992-JAMA
TL;DR: Some, if not all, otherwise healthy men with CBAVD reflect a newly recognized, primarily genital, phenotype of CF, and CF mutation analysis should be recommended for them and their partners, as well as for their relatives.
Abstract: Objective. —Almost all males with cystic fibrosis (CF) have absent vasa deferentia. It has been suggested that otherwise healthy males with congenital bilateral absence of the vas deferens (CBAVD), previously considered a distinct genetic entity, have an increased frequency of CF gene mutations. This study examined the genetic commonality of these two disorders. Design. —We typed six common CF gene mutations in 25 patients with CBAVD. Additional rare mutations were sought using single-stranded conformation polymorphisms and direct DNA sequencing. When rare mutations were found, they were sought in a large sample of both CF patients and obligate CF carriers to exclude them as polymorphisms. Setting. —All the patients presented to a male infertility clinic of a teaching hospital. Subjects. —Twenty-five unselected, unrelated azoospermic men with CBAVD, most of them of Northern European ancestry. Results. —Sixteen (64%) of the 25 men with CBAVD had at least one detectable CF mutation, 16 times the expected frequency (P Conclusions. —Some, if not all, otherwise healthy men with CBAVD reflect a newly recognized, primarily genital, phenotype of CF. Prior to sperm aspiration to remedy infertility, CF mutation analysis should be recommended for them and their partners, as well as for their relatives. (JAMA. 1992;267:1794-1797)

511 citations

Journal ArticleDOI
TL;DR: It is suggested that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate newgr/gr deletions.
Abstract: Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions.

428 citations

Journal ArticleDOI
TL;DR: The discovery of breakpoint hotspots suggest that factors in addition to homology underlie these deletions, which are the largest of all human interstitial deletions for which deletion junctions and complete intervening sequence are available.
Abstract: It is widely believed that at least three nonoverlapping regions of the human Y chromosome—AZFa, AZFb, and AZFc (“azoospermia factors” a ,b , and c)—are essential for normal spermatogenesis. These intervals are defined by interstitial Y-chromosome deletions that impair or extinguish spermatogenesis. Deletion breakpoints, mechanisms, and lengths, as well as inventories of affected genes, have been elucidated for deletions of AZFa and of AZFc but not for deletions of AZFb or of AZFb plus AZFc. We studied three deletions of AZFb and eight deletions of AZFb plus AZFc, as assayed by the STSs defining these intervals. Guided by Y-chromosome sequence, we localized breakpoints precisely and were able to sequence nine of the deletion junctions. Homologous recombination can explain seven of these deletions but not the remaining two. This fact and our discovery of breakpoint hotspots suggest that factors in addition to homology underlie these deletions. The deletions previously thought to define AZFb were found to extend from palindrome P5 to the proximal arm of palindrome P1, 1.5 Mb within AZFc. Thus, they do not define a genomic region separate from AZFc. We also found that the deletions of AZFb plus AZFc, as assayed by standard STSs heretofore available, in fact extend from P5 to the distal arm of P1 and spare distal AZFc. Both classes of deletions are massive: P5/proximal-P1 deletions encompass up to 6.2 Mb and remove 32 genes and transcripts; P5/distal-P1 deletions encompass up to 7.7 Mb and remove 42 genes and transcripts. To our knowledge, these are the largest of all human interstitial deletions for which deletion junctions and complete intervening sequence are available. The restriction of the associated phenotype to spermatogenic failure indicates the remarkable functional specialization of the affected regions of the Y chromosome.

427 citations

Journal ArticleDOI
TL;DR: The AZFa region of the Y chromosome was sequenced and two functional genes previously described were identified: USP9Y (also known as DFFRY) and DBY (refs 7,8).
Abstract: In humans, deletion of any one of three Y-chromosomal regions—AZFa, AZFb or AZFc—disrupts spermatogenesis, causing infertility in otherwise healthy men1,2,3,4,5. Although candidate genes have been identified in all three regions3,6,7,8, no case of spermatogenic failure has been traced to a point mutation in a Y-linked gene, or to a deletion of a single Y-linked gene. We sequenced the AZFa region of the Y chromosome and identified two functional genes previously described: USP9Y (also known as DFFRY) and DBY (refs 7,8). Screening of the two genes in 576 infertile and 96 fertile men revealed several sequence variants, most of which appear to be heritable and of little functional consequence. We found one de novo mutation in USP9Y: a 4-bp deletion in a splice-donor site, causing an exon to be skipped and protein truncation. This mutation was present in a man with nonobstructive azoospermia (that is, no sperm was detected in semen), but absent in his fertile brother, suggesting that the USP9Y mutation caused spermatogenic failure. We also identified a single-gene deletion associated with spermatogenic failure, again involving USP9Y, by re-analysing a published study.

360 citations


Cited by
More filters
Journal ArticleDOI
Robert H. Waterston1, Kerstin Lindblad-Toh2, Ewan Birney, Jane Rogers3  +219 moreInstitutions (26)
05 Dec 2002-Nature
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Abstract: The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

6,643 citations

Journal ArticleDOI
TL;DR: The ATP-binding cassette (ABC) transporters are essential for many processes in the cell and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response.

2,159 citations

Journal ArticleDOI
19 Jun 2003-Nature
TL;DR: The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length, and is a mosaic of heterochromatic sequences and three classes of euchromatics sequences: X-transposed, X-degenerate and ampliconic.
Abstract: The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.

2,022 citations

Journal ArticleDOI
TL;DR: Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.
Abstract: The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants - collectively termed copy-number variants or copy-number polymorphisms - as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.

1,804 citations

Journal ArticleDOI
TL;DR: The current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane are reviewed.
Abstract: The ATP-binding cassette (ABC) transporter superfamily contains membrane proteins that translocate a variety of substrates across extra- and intra-cellular membranes. Genetic variation in these genes is the cause of or contributor to a wide variety of human disorders with Mendelian and complex inheritance, including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Conservation of the ATP-binding domains of these genes has allowed the identification of new members of the superfamily based on nucleotide and protein sequence homology. Phylogenetic analysis is used to divide all 48 known ABC transporters into seven distinct subfamilies of proteins. For each gene, the precise map location on human chromosomes, expression data, and localization within the superfamily has been determined. These data allow predictions to be made as to potential functions or disease phenotypes associated with each protein. In this paper, we review the current state of knowledge on all human ABC genes in inherited disease and drug resistance. In addition, the availability of the complete Drosophila genome sequence allows the comparison of the known human ABC genes with those in the fly genome. The combined data enable an evolutionary analysis of the superfamily. Complete characterization of all ABC from the human genome and from model organisms will lead to important insights into the physiology and the molecular basis of many human disorders.

1,751 citations