scispace - formally typeset
Search or ask a question
Author

Robert Ditchfield

Bio: Robert Ditchfield is an academic researcher from Dartmouth College. The author has contributed to research in topics: Molecular orbital & Molecular orbital theory. The author has an hindex of 20, co-authored 35 publications receiving 25769 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two extended basis sets (termed 5-31G and 6 -31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms carbon to fluorine.
Abstract: Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms carbon to fluorine. These basis functions are similar to the 4–31G set [J. Chem. Phys. 54, 724 (1971)] in that each valence shell is split into inner and outer parts described by three and one Gaussian function, respectively. Inner shells are represented by a single basis function taken as a sum of five (5–31G) or six (6–31G) Gaussians. Studies with a number of polyatomic molecules indicate a substantial lowering of calculated total energies over the 4–31G set. Calculated relative energies and equilibrium geometries do not appear to be altered significantly.

13,036 citations

Journal ArticleDOI
TL;DR: In this article, an extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first row atoms carbon to fluorine, where each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively.
Abstract: An extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first‐row atoms carbon to fluorine. In this set, described as 4–31 G, each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively. The expansion coefficients and Gaussian exponents are determined by minimizing the total calculated energy of the atomic ground state. This basis set is then used in single‐determinant molecular‐orbital studies of a group of small polyatomic molecules. Optimization of valence‐shell scaling factors shows that considerable rescaling of atomic functions occurs in molecules, the largest effects being observed for hydrogen and carbon. However, the range of optimum scale factors for each atom is small enough to allow the selection of a standard molecular set. The use of this standard basis gives theoretical equilibrium geometries in reasonable agreement with experiment.

8,551 citations

Journal ArticleDOI
TL;DR: In this paper, an ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding, which is written as linear combinations of gauge invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory.
Abstract: An ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding. The molecular orbitals are written as linear combinations of gauge-invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory. The final magnetic shielding result is broken up into contributions which can be related to various features of electronic structure. Calculated magnetic shielding constants are presented using three sets of atomic orbitals, all of which are taken as contracted gaussian-type functions. The first two sets are minimal and the third is slightly extended. All three levels of theory give good descriptions of shielding at first row and hydrogen atoms. Carbon and hydrogen chemical shifts calculated at the extended level are in excellent agreement with experimental values.

3,843 citations

Journal ArticleDOI
TL;DR: In this paper, the 3s and 3p Slater-type atomic orbitals are represented by a small number of Gaussian functions and the use of these Gaussian representations in self-consistent molecular orbital calculations is presented.
Abstract: Least‐squares representations of the 3s and 3p Slater‐type atomic orbitals by a small number of Gaussian functions are presented. The use of these Gaussian representations in self‐consistent molecular orbital calculations extends our previous study to molecules containing second row elements. Calculated atomization energies, electric dipole moments, and atomic charges are shown to rapidly converge (with increasing number of Gaussians) to their Slater limits. Results of valence shell optimization studies on a series of second‐row compounds are nearly independent of the level of the Gaussian approximation, and they allow a set of standard molecular ξ exponents to be proposed.

620 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: In this article, a contract Gaussian basis set (6•311G) was developed by optimizing exponents and coefficients at the Mo/ller-Plesset (MP) second-order level for the ground states of first-row atoms.
Abstract: A contracted Gaussian basis set (6‐311G**) is developed by optimizing exponents and coefficients at the Mo/ller–Plesset (MP) second‐order level for the ground states of first‐row atoms. This has a triple split in the valence s and p shells together with a single set of uncontracted polarization functions on each atom. The basis is tested by computing structures and energies for some simple molecules at various levels of MP theory and comparing with experiment.

14,120 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this article, two extended basis sets (termed 5-31G and 6 -31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms carbon to fluorine.
Abstract: Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms carbon to fluorine. These basis functions are similar to the 4–31G set [J. Chem. Phys. 54, 724 (1971)] in that each valence shell is split into inner and outer parts described by three and one Gaussian function, respectively. Inner shells are represented by a single basis function taken as a sum of five (5–31G) or six (6–31G) Gaussians. Studies with a number of polyatomic molecules indicate a substantial lowering of calculated total energies over the 4–31G set. Calculated relative energies and equilibrium geometries do not appear to be altered significantly.

13,036 citations

Journal ArticleDOI
TL;DR: In this paper, a split-valence extended gaussian basis set was used to obtain the LCAO-MO-SCF energies of closed shell species with two non-hydrogen atoms.
Abstract: Polarization functions are added in two steps to a split-valence extended gaussian basis set: d-type gaussians on the first row atoms C. N, O and F and p-type gaussians on hydrogen. The same d-exponent of 0.8 is found to be satisfactory for these four atoms and the hydrogen p-exponent of 1.1 is adequate in their hydrides. The energy lowering due to d functions is found to depend on the local symmetry around the heavy atom. For the particular basis used, the energy lowerings due to d functions for various environments around the heavy atom are tabulated. These bases are then applied to a set of molecules containing up to two heavy atoms to obtain their LCAO-MO-SCF energies. The mean absolute deviation between theory and experiment (where available) for heats of hydrogenation of closed shell species with two non-hydrogen atoms is 4 kcal/mole for the basis set with full polarization. Estimates of hydrogenation energy errors at the Hartree-Fock limit, based on available calculations, are given.

12,669 citations